• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single-photon multiple ionization processes studied by electron coincidence spectroscopy

Linusson, Per January 2013 (has links)
This thesis is based on studies of multiple ionization of atoms and molecules induced by the absorption of a single photon. For the experimental investigations a time-of-flight magnetic bottle spectrometer has been used to detect the emitted electrons in coincidence. The method of coincidence time-of-flight spectroscopy and the experimental setup used is described. Experimental and theoretical results on molecular double core holes (DCHs) and multiple ionization of atoms are presented. Molecular DCHs are of considerable interest, as their chemical shifts are predicted to be more sensitive than their single core hole counterparts. Using CH4 and NH3 as examples, it is shown that molecules with two vacancies in the innermost shell can be studied using synchrotron light in combination with our coincidence technique. The chemical shifts of S 2p DCHs are investigated for the molecules CS2, H2S and SO2 and the influence of relaxation effects on the shifts are estimated. In the studies of atoms, the main focus is on the processes leading to double and higher degrees of ionization, and the final state populations. In cadmium double photoionization in the photon energy region 40-200 eV occurs mainly by indirect ionization via valence ionized satellite states and through Coster-Kronig decay of inner shell hole states. In valence-valence ionization of krypton by 88 eV photons both direct and indirect ionization processes are found to be important. For the indirect pathways strong final state selectivity in the autoionization decays of the intermediate states is observed. Triple ionization of krypton via intermediate core-valence doubly ionized states is investigated. The intermediate states are observed in the energy region 120-125 eV, and their decay to states of the triply charged ion is mapped. Experimental and theoretical results on the formation of 2p double hole states in argon are presented. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
2

Multi-Electron Coincidence Studies of Atoms and Molecules

Andersson, Egil January 2010 (has links)
This thesis concerns multi-ionization coincidence measurements of atoms and small molecules using a magnetic bottle time-of-flight (TOF) spectrometer designed for multi-electron coincidence studies. Also, a time-of-flight mass spectrometer has been used together with the TOF electron  spectrometer for electron-ion coincidence measurements. The multi-ionization processes have been studied by employing a pulsed discharge lamp in the vacuum ultraviolet spectral region and synchrotron radiation in the soft X-ray region. The designs of the spectrometers are described in some detail, and several timing schemes suitable for the light sources mentioned above are presented. Studies have been performed on krypton, molecular oxygen, carbon disulfide and a series of alcohol molecules. For the latter, double ionization spectra have been recorded and new information has been obtained on the dicationic states. A recently found rule-of-thumb  and quantum chemical calculations have been used to quantify the effective distance of the two vacancies in the dications of these molecules. For Kr, O2, and CS2, single-photon core-valence spectra have been obtained at the synchrotron radiation facility BESSY II in Berlin and interpreted on the basis of quantum chemical calculations. These spectra show a remarkable similarity to conventional valence photoelectron spectra. Spectra of triply charged ions were recorded, also at BESSY II, for Kr and CS2 by measuring, in coincidence, all three electrons ejected. The complex transition channels leading to tricationic states were mapped in substantial detail for Kr. It was found that for 3d-ionized krypton, the tricationic states are dominantly populated by cascade Auger decays via distinct intermediate states whose energies have been determined. The triple ionization spectra of CS2 from the direct double Auger effect via S2p, S2s and C1s hole states contain several resolved features and show selectivity based on the initial charge localisation and on the identity of the initial state.
3

Single-photon multiple ionisation of atoms and molecules investigated by coincidence spectroscopy : Site-specific effects in acetaldehyde and carbon dioxide

Zagorodskikh, Sergey January 2016 (has links)
In this thesis, multiple ionisation processes of free atoms and molecules upon single photon absorption are studied by means of a versatile multi-electron-ion coincidence spectroscopy method based on a magnetic bottle, primarily in combination with synchrotron radiation. The latter offered the possibility to access not only valence but also core levels, revealing processes, which promote the target systems into different charge states. One study focuses on double and triple ionisation processes of acetaldehyde (ethanal) in the valence region as well as single and double Auger decay of initial 1s core vacancies. The latter are investigated site-selectively for the two chemically different carbon atoms of acetaldehyde, scrutinising theoretical predictions specifically made for that system. A related study concentrates on core-valence double ionisation spectra of acetaldehyde, which have been investigated in the light of a previously established empirical model, and which have been used as test cases for analysing this kind of spectra by means of quantum chemical electronic structure methods of increasing sophistication. A third study investigates site-specific fragmentation upon 1s photoionisation of acetaldehyde using a magnetic bottle augmented with an in-line ion time-of-flight mass spectrometer. Experimental evidence is presented that bond rupture occurs with highest probability in the vicinity of the initial charge localisation and possible mechanisms are discussed. A site-specificity parameter P∆ is introduced to show that differences in fragmentation behavior between initial ionisations at chemically different carbon atoms probably persist even for identical internal energy contents in the nascent dications. In another study where both electrons and ions from Auger decay of core-excited and core-ionised states of CO2 are detected in coincidence, it is confirmed that O2+ is formed specifically in Auger decay from the C1s → π* and O1s → π* resonances, suggesting a decisive role of the π* orbital in the molecular rearrangement. Also, the molecular rearrangement is found to occur by bending in the resonant states, and O2+ is produced by both single and double Auger decay. A new version of the multi-electron-ion coincidence method, where the ion time-of-flight spectrometer is mounted perpendicularly to the electron flight tube, which affects less the electron resolution and which allows for position sensitive detection of the ions, is employed in combination with tunable soft X-rays to reveal the branching ratios to final Xen+ states with 2 &lt; n &lt; 9 from pure 4d-1, 4p-1, 4s-1, 3d-1 and 3p-1 Xe+ hole states. The coincident electron spectra give information on the Auger cascade pathways. / <p>Byte av lokal vid disputation till Polhemssalen.</p>

Page generated in 0.1753 seconds