• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Collaborative Products: A Design Methodology with Application to Engineering-Based Poverty Alleviation

Morrise, Jacob S. 08 August 2011 (has links) (PDF)
Collaborative products are created when physical components from two or more products are temporarily recombined to form another product capable of performing entirely new tasks. The method for designing collaborative products is useful in developing products with reduced cost, weight, and size. These reductions are valued in the developing world because collaborative products have a favorable task-per-cost ratio. In this paper, a method for designing collaborative products is introduced. The method identifies a set of products capable of being recombined into a collaborative product. These products are then designed to allow for this recombination. Three examples are provided to illustrate the method. These examples show that a collaborative block plane, apple peeler, and brick press, each created from a set of products, can increase the task-per-cost ratio of these products by 42%, 20%, and 30%, respectively. The author concludes that the method introduced herein provides a new and useful tool to design collaborative products and to engineer products that are valued in the developing world.
2

Considering Social Impact when Engineering for Global Development

Ottosson, Hans Jorgen 30 July 2021 (has links)
Every manufactured product has an environmental impact, a social impact, and an economic impact. As engineers, we should do our best to understand how our design decisions influence these impacts (the three pillars of sustainability), and at the same time make decisions that collectively lead to maximum positive impacts, or minimum negative impacts on the economy, environment, and society. Many times, engineers show interest and want to design for all three pillars of sustainability but are often constrained to focus on the environmental and economic aspects, leaving out social sustainability due to lack of understanding and resources. In practice, this leaves the social dimension of sustainability out of sight and reach for many engineers. So to assist engineers to consider and improve the social impacts of their products, we have created two methods. The first method is focused on meeting customers' unmet needs through the use of collaborative products (a product created by temporarily combining physical components from two or more products to perform new tasks) and the second method is to be used throughout the product development process in order to increase the potential social impacts of the product being designed. It will assist engineers to become aware of social impact categories sometimes overlooked, especially when designing for global engineering. If engineers are able to focus on all three pillars of sustainability early in the design process, including social sustainability, they can add social impact indicators along with technical performance measurements during the product development process and design a product that better meets the requirements for environment, economic, and social sustainability. This is why it is important for engineers to know how to handle the complexity and uncertainty associated with design parameters when creating products for social impacts aimed at global development. In this dissertation, the two methods are outlined and explained. The demonstration of the first method showed that by using the method of collaborative product design to create a brick press, the task-per-cost ratio was improved by 30%. The demonstration of the second method showed that a redesign of the cup seal in the India Mark II/III hand pump system (a product used by approximately 10% of the world's population) could extend the service interval with 12% by replacing the cup seals. Lastly, conclusions related to improving social impacts when engineering for global development and suggestions for future research are outlined.
3

A Multiobjective Optimization Method for Collaborative Products with Application to Engineering-Based Poverty Alleviation

Wasley, Nicholas Scott 23 May 2013 (has links) (PDF)
Collaborative products are created by combining components from two or more products to result in a new product that performs previously unattainable tasks. The resulting reduction in cost, weight, and size of a set of products needed to perform a set of functions makes collaborative products useful in the developing world. In this thesis, multiobjective optimization is used to design a set of products for optimal individual and collaborative performance. This is introduced through a nine step method which simultaneously optimizes multiple products both individually and collaboratively. The method searches through multiple complex design spaces while dealing with various trade-offs between products in order to optimize their collaborative performance. An example is provided to illustrate this method and demonstrate its usefulness in designing collaborative products for both the developed and developing world. We conclude that the presented method is a novel, useful approach for designing collaborative products while balancing the inherent trade-offs between the performance of collaborative products and the product sets used to create them.

Page generated in 0.0799 seconds