• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the evolution of autonomous decision-making and communication in collective robotics

Ampatzis, Christos 10 November 2008 (has links)
In this thesis, we use evolutionary robotics techniques to automatically design and synthesise behaviour for groups of simulated and real robots. Our contribution will be on the design of non-trivial individual and collective behaviour; decisions about solitary or social behaviour will be temporal and they will be interdependent with communicative acts. In particular, we study time-based decision-making in a social context: how the experiences of robots unfold in time and how these experiences influence their interaction with the rest of the group. We propose three experiments based on non-trivial real-world cooperative scenarios. First, we study social cooperative categorisation; signalling and communication evolve in a task where the cooperation among robots is not a priori required. The communication and categorisation skills of the robots are co-evolved from scratch, and the emerging time-dependent individual and social behaviour are successfully tested on real robots. Second, we show on real hardware evidence of the success of evolved neuro-controllers when controlling two autonomous robots that have to grip each other (autonomously self-assemble). Our experiment constitutes the first fully evolved approach on such a task that requires sophisticated and fine sensory-motor coordination, and it highlights the minimal conditions to achieve assembly in autonomous robots by reducing the assumptions a priori made by the experimenter to a functional minimum. Third, we present the first work in the literature to deal with the design of homogeneous control mechanisms for morphologically heterogeneous robots, that is, robots that do not share the same hardware characteristics. We show how artificial evolution designs individual behaviours and communication protocols that allow the cooperation between robots of different types, by using dynamical neural networks that specialise on-line, depending on the nature of the morphology of each robot. The experiments briefly described above contribute to the advancement of the state of the art in evolving neuro-controllers for collective robotics both from an application-oriented, engineering point of view, as well as from a more theoretical point of view.
2

A Fluid Dynamics Framework For Control Of Mobile Robot Networks

Pac, Muhammed Rasid 01 August 2007 (has links) (PDF)
This thesis proposes a framework for controlling mobile robot networks based on a fluid dynamics paradigm. The approach is inspired by natural behaviors of fluids demonstrating desirable characteristics for collective robots. The underlying mathematical formalism is developed through establishing analogies between fluid bodies and multi-robot systems such that robots are modeled as fluid elements that constitute a fluid body. The governing equations of fluid dynamics are adapted to multi-robot systems and applied on control of robots. The model governs flow of a robot based on its local interactions with neighboring robots and surrounding environment. Therefore, it provides a layer of decentralized reactive control on low level behaviors, such as obstacle avoidance, deployment, and flow. These behaviors are inherent to the nature of fluids and provide emergent coordination among robots. The framework also introduces a high-level control layer that can be designed according to requirements of the particular task. Emergence of cooperation and collective behavior can be controlled in this layer via a set of parameters obtained from the mathematical description of the system in the lower layer. Validity and potential of the approach have been experimented through simulations primarily on two common collective robotic tasks / deployment and navigation. It is shown that gas-like mobile sensor networks can provide effective coverage in unknown, unstructured, and dynamically changing environments through self-spreading. On the other hand, robots can also demonstrate directional flow in navigation or path following tasks, showing that a wide range of multi-robot applications can potentially be developed using the framework.
3

Contribution à l’étude, la conception et la mise en oeuvre de stratégie de contrôle intelligent distribué en robotique collective / Contribution to study, dand implementation of intelligent distributed control strategies for collective robotics

Wang, Ting 11 July 2012 (has links)
L'objectif de cette thèse s'inscrit dans la cadre général du développement d'une stratégie de contrôle intelligent distribué en robotique collective. En effet, dans un avenir proche, de nombreux robots vont progressivement intégrer notre environnent aussi bien dans les milieux industriel que domestique. L'objectif de ces robots sera de fournir, de manière autonome, des services aux êtres humains afin de leurs faciliter la vie quotidienne comme par exemple dans le cas de robots compagnons. Ces services pourront être le résultat du travail d'un robot ou bien la conséquence de la coopération de plusieurs robots homogènes et/ou hétérogènes regroupés au sein d'un réseau. Dans ce contexte, si les progrès technologiques permettent sans problème de communiquer et d'échanger des données entre deux agents artificiels distants, la conception de stratégies de contrôle permettant l'auto-organisation de plusieurs robots dans le but de réaliser une tâche précise est encore aujourd'hui un verrou scientifique important. Cette thèse a donc pour but de proposer des pistes pour élaborer des stratégies de contrôle intelligent pour des systèmes multi-robots dans le cadre plus particulier de la logistique industrielle. En effet, le domaine de logistique industrielle nécessite l'utilisation de nombreux robots mobiles comme par exemple des AGV (Automatic Guided Vehicles) pour transporter et stoker des marchandises. Dans ce contexte, nous pensons que le domaine de la logistique peut tirer bénéfice de l'utilisation de systèmes multi-robots. Dans un premier temps, cette thèse aborde donc la problématique de transport d'objet volumineux et encombrant par une formation de robot. Effectivement, il semble que la solution qui consiste à utiliser un ensemble de robots identiques pour transporter des charges de grandes envergures soit, d'une part, très intéressante d'un point de vue économique et, d'autre part, plus robuste et flexible d'un point vue technologique. Dans un deuxième temps, cette thèse aborde l'utilisation d'un réseau de robots hétérogènes qui sont capables de s'organiser afin de réaliser une tâche précise dans un milieu dynamique. Les travaux effectués dans le cadre de la présente thèse doctorale ont donc abouti à la proposition des stratégies viables de contrôle intelligent pour des systèmes multi-robots. Une étude d'application des concepts étudiés a été réalisée, implantée et validée dans le cadre plus particulier de la logistique industrielle. Elle a concerné d'abord le contexte d'un groupe multi-robots homogène, puis a été étendue au contexte d'un système multi-robots hétérogènes. Les points forts des travaux réalisés peuvent être résumés comme ceci :- Proposition, conception, réalisation et validation expérimentale d'une stratégie de contrôle adaptatif par l'apprentissage artificiel pour un robot non-holonomique. Quatre publications internationales ont valorisé cette partie des travaux.- Proposition, conception, réalisation et validation expérimentale d'une stratégie de contrôle hybridant la vision artificielle et l'apprentissage artificiel pour un groupe de robots homogènes. Deux publications internationales ont valorisé cette partie des travaux.- Proposition, conception, réalisation et validation expérimentale d'une stratégie de contrôle hybridant la vision artificielle et l'apprentissage artificiel pour un groupe de robots hétérogènes. Deux publications internationales ont valorisé cette partie des travaux. Il est pertinent de souligner que les travaux relatifs aux aspects précités ont été couronnés par le prix : ″Innovation Award 2011″ de Industrial Robot / In this thesis, it concentrated the multi robot team navigating in an unknown environment. In our multi robot team, there is a humanoid robot as a leader and a team of two-wheel nonholonomic robots which form a vertical formation. Besides, a top camera and a computer which is a supervisor are the auxiliary robots in the multi robot team. The main purpose of the thesis is to propose an online and an offline navigation strategy for the closed and open area respectively. The core of navigation strategies is the same and it included path planning part and control part. Both the two parts constructed on the virtual structure of the formation robot team. In the former part, it improved the path planning part by the reinforcement Q learning and the image processing to acknowledge the unknown environment. And it applied the Adaptive Neural Fuzzy Inference System (ANFIS) algorithm to control of both the single nonholonomic robot and formation robot team. Furthermore, the strategies are applied to the formation robot team and the multi robot team in both closed and open environment. Simulations and real experiments are provided in the detail in the thesis. The strong points of the contribution are :- Proposition, conception, realization and experimental validation of machine learning based adaptive control for a nonholonomic single robot (in a group of robots). Four international publications have valorized this part of the doctoral Works. - Proposition, conception, realization and experimental validation of an adaptive intelligent control strategy hybridizing Artificial vision and Machine Learning for a group of nonholonomic homogeneous robots. Two international publications have valorized this part of the doctoral Works.- Proposition, conception, realization and experimental validation of an adaptive intelligent control strategy hybridizing Artificial vision and Machine Learning for a group of heterogeneous robots. Two international publications have valorized this part of the doctoral Works. It is pertinent to emphasize the investigations relative to the above-mentioned works have been awarded by: ″Innovation Award 2011″ of Industrial Robot
4

On the evolution of autonomous decision-making and communication in collective robotics

Ampatzis, Christos 10 November 2008 (has links)
In this thesis, we use evolutionary robotics techniques to automatically design and synthesise<p>behaviour for groups of simulated and real robots. Our contribution will be on<p>the design of non-trivial individual and collective behaviour; decisions about solitary or<p>social behaviour will be temporal and they will be interdependent with communicative<p>acts. In particular, we study time-based decision-making in a social context: how the<p>experiences of robots unfold in time and how these experiences influence their interaction<p>with the rest of the group. We propose three experiments based on non-trivial real-world<p>cooperative scenarios. First, we study social cooperative categorisation; signalling and<p>communication evolve in a task where the cooperation among robots is not a priori required.<p>The communication and categorisation skills of the robots are co-evolved from<p>scratch, and the emerging time-dependent individual and social behaviour are successfully<p>tested on real robots. Second, we show on real hardware evidence of the success of evolved<p>neuro-controllers when controlling two autonomous robots that have to grip each other<p>(autonomously self-assemble). Our experiment constitutes the first fully evolved approach<p>on such a task that requires sophisticated and fine sensory-motor coordination, and it<p>highlights the minimal conditions to achieve assembly in autonomous robots by reducing<p>the assumptions a priori made by the experimenter to a functional minimum. Third, we<p>present the first work in the literature to deal with the design of homogeneous control<p>mechanisms for morphologically heterogeneous robots, that is, robots that do not share<p>the same hardware characteristics. We show how artificial evolution designs individual<p>behaviours and communication protocols that allow the cooperation between robots of<p>different types, by using dynamical neural networks that specialise on-line, depending on<p>the nature of the morphology of each robot. The experiments briefly described above<p>contribute to the advancement of the state of the art in evolving neuro-controllers for<p>collective robotics both from an application-oriented, engineering point of view, as well as<p>from a more theoretical point of view. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.1047 seconds