• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Creation and Evaluation of Solid Optical Tissue Phantoms for Bio-Medical Optics Applications

Hartleb, Carina January 2005 (has links)
<p>Because of their compatibility and precise results bio-optical methods based on measurements of the optical tissue properties gain importance in non-invasive medical therapy and diagnostic. For development and standardization of medical devices optical phantoms are suitable. The present report handles the creation and evaluation of solid tissue phantoms, made up of Agar, Vasolipid and ink utilizing different mixture ratios. After cutting the models in slices of 0.2 to 1.1 mm thickness the absorption- and scattering coefficient were measured using a collimated laser beam setup. As result of the study a formula for the preparation of solid optical tissue phantoms with desired optical properties was found, that is valid for models containing 1.12 % Agar.</p>
2

Creation and Evaluation of Solid Optical Tissue Phantoms for Bio-Medical Optics Applications

Hartleb, Carina January 2005 (has links)
Because of their compatibility and precise results bio-optical methods based on measurements of the optical tissue properties gain importance in non-invasive medical therapy and diagnostic. For development and standardization of medical devices optical phantoms are suitable. The present report handles the creation and evaluation of solid tissue phantoms, made up of Agar, Vasolipid and ink utilizing different mixture ratios. After cutting the models in slices of 0.2 to 1.1 mm thickness the absorption- and scattering coefficient were measured using a collimated laser beam setup. As result of the study a formula for the preparation of solid optical tissue phantoms with desired optical properties was found, that is valid for models containing 1.12 % Agar.

Page generated in 0.1035 seconds