Spelling suggestions: "subject:"lysolipid"" "subject:"isolipid""
1 |
Creation and Evaluation of Solid Optical Tissue Phantoms for Bio-Medical Optics ApplicationsHartleb, Carina January 2005 (has links)
<p>Because of their compatibility and precise results bio-optical methods based on measurements of the optical tissue properties gain importance in non-invasive medical therapy and diagnostic. For development and standardization of medical devices optical phantoms are suitable. The present report handles the creation and evaluation of solid tissue phantoms, made up of Agar, Vasolipid and ink utilizing different mixture ratios. After cutting the models in slices of 0.2 to 1.1 mm thickness the absorption- and scattering coefficient were measured using a collimated laser beam setup. As result of the study a formula for the preparation of solid optical tissue phantoms with desired optical properties was found, that is valid for models containing 1.12 % Agar.</p>
|
2 |
Creation and Evaluation of Solid Optical Tissue Phantoms for Bio-Medical Optics ApplicationsHartleb, Carina January 2005 (has links)
Because of their compatibility and precise results bio-optical methods based on measurements of the optical tissue properties gain importance in non-invasive medical therapy and diagnostic. For development and standardization of medical devices optical phantoms are suitable. The present report handles the creation and evaluation of solid tissue phantoms, made up of Agar, Vasolipid and ink utilizing different mixture ratios. After cutting the models in slices of 0.2 to 1.1 mm thickness the absorption- and scattering coefficient were measured using a collimated laser beam setup. As result of the study a formula for the preparation of solid optical tissue phantoms with desired optical properties was found, that is valid for models containing 1.12 % Agar.
|
3 |
Optical Scattering Properties of Fat Emulsions Determined by Diffuse Reflectance Spectroscopy and Monte Carlo SimulationsHussain, Moeed January 2010 (has links)
<p>To estimate the propagation of light in tissue-like optical phantoms (fat emulsions), this thesis utilized the diffuse reflectance spectroscopy in combination with Monte Carlo simulations. A method for determining the two-parametric Gegenbauer-kernal phase function was utilized in order to accurately describe the diffuse reflectance from poly-dispersive scattering optical phantoms with small source-detector separations. The method includes the spectral collimated transmission, spatially resolved diffuse reflectance spectra (SRDR) and the inverse technique of matching spectra from Monte Carlo simulations to those measured. An absolute calibration method using polystyrene micro-spheres was utilized to estimate the relation between simulated and measured SRDR intensities. The phase function parameters were comparable with previous studies and were able to model measured spectra with good accuracy. Significant differences between the phase functions for homogenized milk and the nutritive fat emulsions were found.</p><p> </p>
|
4 |
Optical Scattering Properties of Fat Emulsions Determined by Diffuse Reflectance Spectroscopy and Monte Carlo SimulationsHussain, Moeed January 2010 (has links)
To estimate the propagation of light in tissue-like optical phantoms (fat emulsions), this thesis utilized the diffuse reflectance spectroscopy in combination with Monte Carlo simulations. A method for determining the two-parametric Gegenbauer-kernal phase function was utilized in order to accurately describe the diffuse reflectance from poly-dispersive scattering optical phantoms with small source-detector separations. The method includes the spectral collimated transmission, spatially resolved diffuse reflectance spectra (SRDR) and the inverse technique of matching spectra from Monte Carlo simulations to those measured. An absolute calibration method using polystyrene micro-spheres was utilized to estimate the relation between simulated and measured SRDR intensities. The phase function parameters were comparable with previous studies and were able to model measured spectra with good accuracy. Significant differences between the phase functions for homogenized milk and the nutritive fat emulsions were found.
|
Page generated in 0.0293 seconds