1 |
Etude et optimisation d'algorithmes pour le suivi d'objets couleur / Analysis and optimisation of algorithms for color object trackingLaguzet, Florence 27 September 2013 (has links)
Les travaux de cette thèse portent sur l'amélioration et l'optimisation de l'algorithme de suivi d'objet couleur Mean-Shift à la fois d’un point de vue robustesse du suivi et d’un point de vue architectural pour améliorer la vitesse d’exécution. La première partie des travaux a consisté en l'amélioration de la robustesse du suivi. Pour cela, l'impact des espaces de représentation couleur a été étudié, puis une méthode permettant la sélection de l'espace couleur représentant le mieux l'objet à suivre a été proposée. L'environnement de la cible changeant au cours du temps, une stratégie est mise en place pour resélectionner un espace couleur au moment opportun. Afin d'améliorer la robustesse dans le cas de séquences particulièrement difficile, le Mean-Shift avec stratégie de sélection a été couplé avec un autre algorithme plus coûteux en temps d'exécution : le suivi par covariance. L’objectif de ces travaux est d’obtenir un système complet fonctionnant en temps réel sur processeurs multi-cœurs SIMD. Une phase d’étude et d'optimisation a donc été réalisée afin de rendre les algorithmes paramétrables en complexité pour qu’ils puissent s’exécuter en temps réel sur différentes plateformes, pour différentes tailles d’images et d’objets suivi. Dans cette optique de compromis vitesse / performance, il devient ainsi possible de faire du suivi temps-réel sur des processeurs ARM type Cortex A9. / The work of this thesis focuses on the improvement and optimization of the Mean-Shift color object tracking algorithm, both from a theoretical and architectural point of view to improve both the accuracy and the execution speed. The first part of the work consisted in improving the robustness of the tracking. For this, the impact of color space representation on the quality of tracking has been studied, and a method for the selection of the color space that best represents the object to be tracked has been proposed. The method has been coupled with a strategy determining the appropriate time to recalculate the model. Color space selection method was also used in collaboration with another object tracking algorithm to further improve the tracking robustness for particularly difficult sequences : the covariance tracking which is more time consuming. The objective of this work is to obtain an entire real time system running on multi-core SIMD processors. A study and optimization phase has been made in order to obtain algorithms with a complexity that is configurable so that they can run in real time on different platforms, for various sizes of images and object tracking. In this context of compromise between speed and performance, it becomes possible to do real-time tracking on processors like ARM Cortex A9.
|
2 |
Le signal monogène couleur : théorie et applications / The Color Monogenic Signal : theory and applicationsDemarcq, Guillaume 10 December 2010 (has links)
Dans cette thèse, une nouvelle représentation des images couleur basée sur une généralisation du signal analytique est introduite. En utilisant l'analogie entre les conditions de Cauchy-Riemann, qui définissent le caractère holomorphe d'une fonction, et l'équation de Dirac dans l'algèbre de Clifford R_{5,0}, un système d'équations dont la solution est le signal monogène couleur est obtenu. Ce signal est notamment basé sur des noyaux de Riesz ainsi que de Poisson 2D, et une représentation polaire, basée sur un produit géométrique, peut lui être associée. Les applications envisagées reposent majoritairement sur cette représentation polaire et sur les informations de couleur et de structures locales s'y rattachant. Des problématiques liées au flot optique couleur, à la segmentation couleur multi-échelle, au suivi d'objets couleur et à la détection de points d'intérêt sont abordées. En ce qui concerne le flot optique, nous nous intéressons à l'extraction du mouvement d'objets d'une certaine couleur en remplaçant la contrainte de conservation de l'intensité par une contrainte de conservation d'angles. Pour la segmentation, une méthode de détection de contours basée sur de la géométrie différentielle et plus particulièrement sur la première forme fondamentale d'une surface, est proposée afin de déterminer les contours d'objets d'une couleur choisie. Pour le suivi d'objets, nous définissons un nouveau critère de similarité utilisant le produit géométrique que nous insérons dans un filtrage particulaire. Enfin, nous resituons la définition du détecteur de Harris dans le cadre de la géométrie différentielle en faisant le lien entre ce dernier et une version "relaxée" du discriminant du polynôme caractéristique de la première forme fondamentale. Ensuite nous proposons une nouvelle version multi-échelle de ce détecteur en traitant le paramètre d'échelle comme une variable d'une variété de dimension 3. / In this thesis, a novel framework for color image processing is introduced based on the generalization of the analytic signal. Using the analogy between the Cauchy-Riemann conditions and the Dirac equation in the Clifford algebra R_{5,0}, a system of equations which leads to the color monogenic signal is obtained. This latter is based on the Riesz and 2D Poisson kernels, and a polar representation based on the geometric product can be associated to this signal. Some applications using color and local structure information provided by the polar representation are presented. Namely, color optical flow, color segmentation, color object tracking and points of interest are developed. Extraction of optical flow in a chosen color is obtained by replacing the brightness constancy assumption by an angle constancy. Edge detection is based on the first fundamental form from differential geometry in order to segment object in a predefined color. Object tracking application uses a new similarity criterion defined by geometric product of block of vectors. This latter is viewed as the likelyhood measure of a particle filter. Last part of the thesis is devoted to the definition of the Harris detector in the framework of differential geometry and a link between this definition and a relaxed version of the characteristic polynomial discriminant of the first fundamental form is given. In this context, a new scale-space detector is provided as the result of handling the scale parameter as a variable in a 3-manifold.
|
Page generated in 0.0709 seconds