• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 1
  • Tagged with
  • 32
  • 32
  • 23
  • 11
  • 11
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Construction of combinatorial designs with prescribed automorphism groups

Unknown Date (has links)
In this dissertation, we study some open problems concerning the existence or non-existence of some combinatorial designs. We give the construction or proof of non-existence of some Steiner systems, large sets of designs, and graph designs, with prescribed automorphism groups. / by Emre Kolotoæglu. / Thesis (Ph.D.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
22

Low rank transitive representations, primitive extensions, and the collision problem in PSL (2, q)

Unknown Date (has links)
Every transitive permutation representation of a finite group is the representation of the group in its action on the cosets of a particular subgroup of the group. The group has a certain rank for each of these representations. We first find almost all rank-3 and rank-4 transitive representations of the projective special linear group P SL(2, q) where q = pm and p is an odd prime. We also determine the rank of P SL (2, p) in terms of p on the cosets of particular given subgroups. We then investigate the construction of rank-3 transitive and primitive extensions of a simple group, such that the extension group formed is also simple. In the latter context we present a new, group theoretic construction of the famous Hoffman-Singleton graph as a rank-3 graph. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
23

Essays in optimal auction design

Jarman, Ben. January 2008 (has links)
Thesis (Ph. D.)--University of Sydney, 2009. / Title from title screen (viewed May 1, 2009) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Economics to the Faculty of Economics and Business, University of Sydney. Degree awarded 2009; thesis submitted 2008. Bibliography: leaves 93-97. Also available in print form.
24

The traveling salesman problem improving K-opt via edge cut equivalence sets

Holland, Eric 01 January 2001 (has links)
The traveling salesman problem (TSP) has become a classic in the field of combinatorial optimization. Attracting computer scientists and mathematicians, the problem involves finding a minimum cost Hamiltonian cycle in a weighted graph.
25

Variable Strength Covering Arrays

Raaphorst, Sebastian 21 January 2013 (has links)
Recently, covering arrays have been the subject of considerable research attention as they hold both theoretical interest and practical importance due to their applications to testing. In this thesis, we perform the first comprehensive study of a generalization of covering arrays called variable strength covering arrays, where we dictate the interactions to be covered in the array by modeling them as facets of an abstract simplicial complex. We outline the necessary background in the theory of hypergraphs, combinatorial testing, and design theory that is relevant to the study of variable strength covering arrays. We then approach questions that arise in variable strength covering arrays in a number of ways. We demonstrate their connections to hypergraph homomorphisms, and explore the properties of a particular family of abstract simplicial complexes, the qualitative independence hypergraphs. These hypergraphs are tightly linked to variable strength covering arrays, and we determine and identify several of their important properties and subhypergraphs. We give a detailed study of constructions for variable strength covering arrays, and provide several operations and divide-and-conquer techniques that can be used in building them. In addition, we give a construction using linear feedback shift registers from primitive polynomials of degree 3 over arbitrary finite fields to find variable strength covering arrays, which we extend to strength-3 covering arrays whose sizes are smaller than many of the best known sizes of covering arrays. We then give an algorithm for creating variable strength covering arrays over arbitrary abstract simplicial complexes, which builds the arrays one row at a time, using a density concept to guarantee that the size of the resultant array is asymptotic in the logarithm of the number of facets in the abstact simplicial complex. This algorithm is of immediate practical importance, as it can be used to create test suites for combinatorial testing. Finally, we use the Lovasz Local Lemma to nonconstructively determine upper bounds on the sizes of arrays for a number of different families of hypergraphs. We lay out a framework that can be used for many hypergraphs, and then discuss possible strategies that can be taken in asymmetric problems.
26

Variable Strength Covering Arrays

Raaphorst, Sebastian 21 January 2013 (has links)
Recently, covering arrays have been the subject of considerable research attention as they hold both theoretical interest and practical importance due to their applications to testing. In this thesis, we perform the first comprehensive study of a generalization of covering arrays called variable strength covering arrays, where we dictate the interactions to be covered in the array by modeling them as facets of an abstract simplicial complex. We outline the necessary background in the theory of hypergraphs, combinatorial testing, and design theory that is relevant to the study of variable strength covering arrays. We then approach questions that arise in variable strength covering arrays in a number of ways. We demonstrate their connections to hypergraph homomorphisms, and explore the properties of a particular family of abstract simplicial complexes, the qualitative independence hypergraphs. These hypergraphs are tightly linked to variable strength covering arrays, and we determine and identify several of their important properties and subhypergraphs. We give a detailed study of constructions for variable strength covering arrays, and provide several operations and divide-and-conquer techniques that can be used in building them. In addition, we give a construction using linear feedback shift registers from primitive polynomials of degree 3 over arbitrary finite fields to find variable strength covering arrays, which we extend to strength-3 covering arrays whose sizes are smaller than many of the best known sizes of covering arrays. We then give an algorithm for creating variable strength covering arrays over arbitrary abstract simplicial complexes, which builds the arrays one row at a time, using a density concept to guarantee that the size of the resultant array is asymptotic in the logarithm of the number of facets in the abstact simplicial complex. This algorithm is of immediate practical importance, as it can be used to create test suites for combinatorial testing. Finally, we use the Lovasz Local Lemma to nonconstructively determine upper bounds on the sizes of arrays for a number of different families of hypergraphs. We lay out a framework that can be used for many hypergraphs, and then discuss possible strategies that can be taken in asymmetric problems.
27

Cohomology and K-theory of aperiodic tilings

Savinien, Jean P.X. January 2008 (has links)
Thesis (Ph.D.)--Mathematics, Georgia Institute of Technology, 2008. / Committee Chair: Prof. Jean Bellissard; Committee Member: Prof. Claude Schochet; Committee Member: Prof. Michael Loss; Committee Member: Prof. Stavros Garoufalidis; Committee Member: Prof. Thang Le.
28

Variable Strength Covering Arrays

Raaphorst, Sebastian January 2013 (has links)
Recently, covering arrays have been the subject of considerable research attention as they hold both theoretical interest and practical importance due to their applications to testing. In this thesis, we perform the first comprehensive study of a generalization of covering arrays called variable strength covering arrays, where we dictate the interactions to be covered in the array by modeling them as facets of an abstract simplicial complex. We outline the necessary background in the theory of hypergraphs, combinatorial testing, and design theory that is relevant to the study of variable strength covering arrays. We then approach questions that arise in variable strength covering arrays in a number of ways. We demonstrate their connections to hypergraph homomorphisms, and explore the properties of a particular family of abstract simplicial complexes, the qualitative independence hypergraphs. These hypergraphs are tightly linked to variable strength covering arrays, and we determine and identify several of their important properties and subhypergraphs. We give a detailed study of constructions for variable strength covering arrays, and provide several operations and divide-and-conquer techniques that can be used in building them. In addition, we give a construction using linear feedback shift registers from primitive polynomials of degree 3 over arbitrary finite fields to find variable strength covering arrays, which we extend to strength-3 covering arrays whose sizes are smaller than many of the best known sizes of covering arrays. We then give an algorithm for creating variable strength covering arrays over arbitrary abstract simplicial complexes, which builds the arrays one row at a time, using a density concept to guarantee that the size of the resultant array is asymptotic in the logarithm of the number of facets in the abstact simplicial complex. This algorithm is of immediate practical importance, as it can be used to create test suites for combinatorial testing. Finally, we use the Lovasz Local Lemma to nonconstructively determine upper bounds on the sizes of arrays for a number of different families of hypergraphs. We lay out a framework that can be used for many hypergraphs, and then discuss possible strategies that can be taken in asymmetric problems.
29

Planejamentos combinatórios construindo sistemas triplos de steiner

Barbosa, Enio Perez Rodrigues 26 August 2011 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-16T12:52:36Z No. of bitstreams: 2 Dissertação EnioPerez.pdf: 2190954 bytes, checksum: 8abd6c2cd31279e28971c632f6ed378b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-16T14:10:30Z (GMT) No. of bitstreams: 2 Dissertação EnioPerez.pdf: 2190954 bytes, checksum: 8abd6c2cd31279e28971c632f6ed378b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-16T14:10:30Z (GMT). No. of bitstreams: 2 Dissertação EnioPerez.pdf: 2190954 bytes, checksum: 8abd6c2cd31279e28971c632f6ed378b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2011-08-26 / Intuitively, the basic idea of Design Theory consists of a way to select subsets, also called blocks, of a finite set, so that some properties are satisfied. The more general case are the blocks designs. A PBD is an ordered pair (S;B), where S is a finite set of symbols, and B is a collection of subsets of S called blocks, such that each pair of distinct elements of S occur together in exactly one block of B. A Steiner Triple System is a particular case of a PBD, where every block has size only 3, being called triples. The main focus is in building technology systems. By resolvability is discussed as a Steiner Triple Systems is resolvable, and when it is not resolvable. This theory has several applications, eg, embeddings and even problems related to computational complexity. / Intuitivamente, a idéia básica de um Planejamento Combinatório consiste em uma maneira de selecionar subconjuntos, também chamados de blocos, de um conjunto finito, de modo que algumas propriedades especificadas sejam satisfeitas. O caso mais geral são os planejamentos balanceados. Um PBD é um par ordenado (S;B), onde S é um conjunto finito de símbolos, e B é uma coleção de subconjuntos de S chamados blocos, tais que cada par de elementos distintos de S ocorrem juntos em exatamente um bloco de B. Um Sistema Triplo de Steiner é um caso particular de um PBD, em que todos os blocos tem tamanho único 3, sendo chamados de triplas. O foco principal está nas técnicas de construção dos sistemas. Por meio da resolubilidade se discute quando um Sistema Triplo de Steiner é resolvível e quando não é resolvível. Esta teoria possui várias aplicações, por exemplo: imersões e até mesmo problemas relacionados à complexidade computacional.
30

Combinatorial Technique for Biomaterial Design

Wingkono, Gracy A. 12 July 2004 (has links)
Combinatorial techniques have changed the paradigm of materials research by allowing a faster data acquisition in complex problems with multidimensional parameter space. The focus of this thesis is to demonstrate biomaterials design and characterization via preparation of two dimensional combinatorial libraries with chemically-distinct structured patterns. These are prepared from blends of biodegradable polymers using thickness and temperature gradient techniques. The desired pattern in the library is chemically-distinct cell adhesive versus non-adhesive micro domains that improve library performance compared to previous implementations that had modest chemical differences. Improving adhesive contrast should minimize the competing effects of chemistry versus physical structure. To accomplish this, a method of blending and crosslinking cell adhesive poly(季aprolactone) (PCL) with cell non-adhesive poly(ethylene glycol) (PEG) was developed. We examine the interaction between MC3T3-E1 osteoblast cells and PCL-PEG libraries of thousands of distinct chemistries, microstructures, and roughnesses. These results show that cells grown on such patterned biomaterial are sensitive to the physical distribution and phases of the PCL and PEG domains. We conclude that the cells adhered and spread on PCL regions mixed with PEG-crosslinked non-crystalline phases. Tentatively, we attribute this behavior to enhanced physical, as well as chemical, contrast between crystalline PCL and non-crystalline PEG.

Page generated in 0.061 seconds