• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Demography, Biomass Production and Effects of Harvesting Giant Kelp Macrocystis pyrifera (Linnaeus) in Southern New Zealand.

Pirker, John Georg January 2002 (has links)
This study examined the demography of giant kelp Macrocystis pyrifera (Linnaeus) and its interactions with understorey algae and invertebrates in southern New Zealand over two and a half years. Most of the study was done at two sites within Akaroa Harbour (Banks Peninsula) but ancillary sites at Tory Channel (Marlborough Sounds) were used for parts of the study. The kelp forests within Akaroa Harbour were generally highly productive, with a high annual turnover of giant kelp. Macrocystis plants were mostly annual and rarely reached ages greater than 12 months. Peak recruitment occurred in spring (November) during 1995-97, but lesser recruitment episodes occurred throughout the year. The maximum growth rates of Macrocystis fronds were comparable to rates reported elsewhere in southern hemisphere populations (22 mm - 24.5 mmlday), but considerably lower than those in northern hemisphere populations. The major experiment incorporated in the study tested the effects of the Macrocystis canopy and the understorey canopy of the stipitate laminarian Ecklonia radiata on macroalgae and invertebrates. The experiment was structured so that the effects of clearances at different times could be determined. One impetus for this experiment was the need to address issues relating to the commercial harvesting of giant kelp, its sustainability and its effects on other species. The effects of canopy removals on understorey algae, mostly juvenile Macrocystis, Ecklonia and Carpophyllum spp, were highly dependent on the timing of canopy removals and the combinations of canopies removed. For example, winter harvests of the Macrocystis canopy alone enhanced the survival of post-settlement Macrocystis recruits, but had little effect on Ecklonia recruitment. However, when both Macrocystis and Ecklonia canopies were removed in spring, there was heavy recruitment of Ecklonia that grew to dominate the understorey. Strong inter and intraspecific interactions from the Macrocystis surface canopy appeared to have been reduced by physical factors including water turbidity, sedimentation and the deterioration of the surface canopy during summer. These physical factors were not as limiting in Tory Channel. Fine scale extrinsic factor effects including nutrients, light and grazing on the early life history of Macrocystis were investigated in small experiments. Results suggest that recruitment may be nutrient limited even at moderately low temperatures, and that small herbivorous gastropods are an important source of mortality in the early life stages of Macrocystis. Culturing and transplantation cultivation techniques were also examined as a means of supplementing algal supplies. Macrocystis was cultured successfully through its life cycle onto culture ropes, but generally failed to produce visible sporophytes when placed in the field. Cultured plants did grow in Tory Channel, however. Juvenile plants transplanted to ropes for on-farm cultivation showed little growth during summer, but the addition of nutrients significantly enhanced growth rates of these plants during warmer months when natural nutrient levels were low. Increased growth rates at the onset of winter and with the addition of nutrients during summer confirmed that low nutrient levels during summer are growth limiting. Akaroa Harbour kelp forests exhibited considerable variation in Macrocystis canopy biomass through time. For example, the 32,000 m2 kelp forest at Wainui had a biomass of 144 t in October 1995, which then decreased to 21 t in October 1996. Canopies tended to deteriorate during summer. Thus, at Ohinepaka Bay kelp forest had a biomass of 31 t during winter 1997, which decreased to 0.06 t the following summer. The greatest reduction in biomass, however, coincided with a period of hugely increased sediment, which smothered blades in the sea-surface canopy, covered the substratum, and prevented successful recruitment of kelp for over a year. Nutrient depletion was one of several factors thought to cause the summer deterioration of the Macrocystis sea-surface canopy, which has important ramifications for the commercial harvesting of Macrocystis pyrifera in summer. Management considerations and options are discussed in relation the commercial harvesting of Macrocystis in New Zealand. The major conclusion of this study is that although Macrocystis was able to form dense surface canopies during winter its ability to dominate kelp forests was constrained by physical factors, especially sedimentation, high turbidity, nutrients, and storms. The lack of strong interactions between Macrocystis and Ecklonia are also largely a result of their different life history characteristics. Overall, there appear to be no significant negative flow-on effects resulting from kelp harvesting and it appears that Macrocystis can be harvested sustainably.
2

Demography, Biomass Production and Effects of Harvesting Giant Kelp Macrocystis pyrifera (Linnaeus) in Southern New Zealand.

Pirker, John Georg January 2002 (has links)
This study examined the demography of giant kelp Macrocystis pyrifera (Linnaeus) and its interactions with understorey algae and invertebrates in southern New Zealand over two and a half years. Most of the study was done at two sites within Akaroa Harbour (Banks Peninsula) but ancillary sites at Tory Channel (Marlborough Sounds) were used for parts of the study. The kelp forests within Akaroa Harbour were generally highly productive, with a high annual turnover of giant kelp. Macrocystis plants were mostly annual and rarely reached ages greater than 12 months. Peak recruitment occurred in spring (November) during 1995-97, but lesser recruitment episodes occurred throughout the year. The maximum growth rates of Macrocystis fronds were comparable to rates reported elsewhere in southern hemisphere populations (22 mm - 24.5 mmlday), but considerably lower than those in northern hemisphere populations. The major experiment incorporated in the study tested the effects of the Macrocystis canopy and the understorey canopy of the stipitate laminarian Ecklonia radiata on macroalgae and invertebrates. The experiment was structured so that the effects of clearances at different times could be determined. One impetus for this experiment was the need to address issues relating to the commercial harvesting of giant kelp, its sustainability and its effects on other species. The effects of canopy removals on understorey algae, mostly juvenile Macrocystis, Ecklonia and Carpophyllum spp, were highly dependent on the timing of canopy removals and the combinations of canopies removed. For example, winter harvests of the Macrocystis canopy alone enhanced the survival of post-settlement Macrocystis recruits, but had little effect on Ecklonia recruitment. However, when both Macrocystis and Ecklonia canopies were removed in spring, there was heavy recruitment of Ecklonia that grew to dominate the understorey. Strong inter and intraspecific interactions from the Macrocystis surface canopy appeared to have been reduced by physical factors including water turbidity, sedimentation and the deterioration of the surface canopy during summer. These physical factors were not as limiting in Tory Channel. Fine scale extrinsic factor effects including nutrients, light and grazing on the early life history of Macrocystis were investigated in small experiments. Results suggest that recruitment may be nutrient limited even at moderately low temperatures, and that small herbivorous gastropods are an important source of mortality in the early life stages of Macrocystis. Culturing and transplantation cultivation techniques were also examined as a means of supplementing algal supplies. Macrocystis was cultured successfully through its life cycle onto culture ropes, but generally failed to produce visible sporophytes when placed in the field. Cultured plants did grow in Tory Channel, however. Juvenile plants transplanted to ropes for on-farm cultivation showed little growth during summer, but the addition of nutrients significantly enhanced growth rates of these plants during warmer months when natural nutrient levels were low. Increased growth rates at the onset of winter and with the addition of nutrients during summer confirmed that low nutrient levels during summer are growth limiting. Akaroa Harbour kelp forests exhibited considerable variation in Macrocystis canopy biomass through time. For example, the 32,000 m2 kelp forest at Wainui had a biomass of 144 t in October 1995, which then decreased to 21 t in October 1996. Canopies tended to deteriorate during summer. Thus, at Ohinepaka Bay kelp forest had a biomass of 31 t during winter 1997, which decreased to 0.06 t the following summer. The greatest reduction in biomass, however, coincided with a period of hugely increased sediment, which smothered blades in the sea-surface canopy, covered the substratum, and prevented successful recruitment of kelp for over a year. Nutrient depletion was one of several factors thought to cause the summer deterioration of the Macrocystis sea-surface canopy, which has important ramifications for the commercial harvesting of Macrocystis pyrifera in summer. Management considerations and options are discussed in relation the commercial harvesting of Macrocystis in New Zealand. The major conclusion of this study is that although Macrocystis was able to form dense surface canopies during winter its ability to dominate kelp forests was constrained by physical factors, especially sedimentation, high turbidity, nutrients, and storms. The lack of strong interactions between Macrocystis and Ecklonia are also largely a result of their different life history characteristics. Overall, there appear to be no significant negative flow-on effects resulting from kelp harvesting and it appears that Macrocystis can be harvested sustainably.
3

Winter Waterbird Ecology on the Great Salt Lake, Utah, and Interactions with Commercial Harvest of Brine Shrimp Cysts

Roberts, Anthony J. 01 December 2013 (has links)
Interactions among commercial fisheries and birds have been studied in open ocean ecosystems and at aquaculture facilities. On the Great Salt Lake (GSL), Utah, USA, a commercial harvest of brine shrimp (Artemia franciscana) eggs (i.e. cysts) occurs annually during fall and winter. Coinciding with commercial harvest is the use of the GSL by millions of waterbirds which has the potential to result in conflict among industry and birds. The objectives of my research were to examine fall and winter ecology of birds using the GSL and interactions with the brine shrimp cyst harvest. I examined the influence of temperature and food availability on the number and distribution of waterfowl and eared grebes (Podiceps nigricollis). I also assessed the diets of the same species to see how much cyst biomass is being consumed by birds compared to removal by commercial harvest. A mass die-off (i.e. downing) of migrating eared grebes occurred during my research, so I assessed differences among birds that died and those that did not to better explain this phenomenon. Finally, I assessed the breeding origin of northern shovelers (Anas clypeata) wintering on the GSL using stable isotopeand banding data.I found that commercial harvest boats did not influence duck population numbersor distribution; rather temperature and food availability most influenced abundance and distribution, though this influence varied by species. Compared to commercial harvest, northern shovelers, green-winged teal (Anas crecca), and eared grebes removed a small fraction of the total amount of cysts that were removed from the GSL. Waterfowl diets were mainly wetland plant seeds during fall and spring, but when freshwater marshes were frozen in winter, ducks ate mostly brine shrimp cysts and brine fly (Ephydra spp.) larvae. Eared grebes are highly associated with saltwater habitats and they consumed adult brine shrimp most of the fall. Eared grebes that perished during the downing had mercury and selenium concentrations above levels seen in pre- and post-downing birds and higher than observed concentration that impact bird species, providing a potential ultimate cause of death during snowstorms that accompany most downings. Stable isotope analysis indicated northern shovelers that winter on the GSL had breeding origins throughout the specie’s range, but most came from local or southern Prairie Pothole Region breeding populations.
4

The Status of Snapping Turtles (Chelydra serpentina) in Virginia: Population Viability, Demography, Regulatory Analysis, and Conservation

Colteaux, Benjamin C. 01 January 2017 (has links)
Snapping turtles (Chelydra serpentina) are being harvested in unprecedented numbers in the United States (US) to meet the needs of international markets. Over three million live snapping turtles from farm and wild caught stock were exported from the US to Asia in 2012-14 alone. In the Commonwealth of Virginia, records indicate that 29,860 snapping turtles were commercially harvested between 2000 and 2015. Size limits are often used to regulate harvest pressure in snapping turtles and other game species. I analyzed the historic harvest of eleven US states to test the efficacy of minimum-size limit regulations at reducing commercial harvest pressure. Further, I conducted a four-year mark-recapture study on three Virginia waterways that have each experienced a different level of historic commercial harvest. As part of the larger mark/recapture project, I conducted radio telemetry on 23 turtles to examine seasonal, body size, and sex-specific effects on home range size of snapping turtles in a lotic system. I incorporated survival and growth rates from this study, demographic rates from the literature, and state-collected harvest rates into a hybrid age/stage population matrix model to estimate the population growth rate at three harvest levels (0%, 21%, 58%) that were estimated based on annual commercial landing reports on file with the Virginia Department of Game and Inland Fisheries. I used the model to test population viability under multiple size limit regulations, and used sensitivity analyses to identify adult stages most critical to the overall population growth rate. Based on model estimates, size-limits were effective at reducing harvest by 30-87% in years with high harvest pressure. However, most size limit regulations result in the removal of larger breeding adults, which has been shown to be detrimental to long term population viability. Based on radio-telemetry data, I found evidence that snapping turtles utilize lotic and lentic habitats differently, which can have implications for management of this iconic species. Matrix population modelling predicted that population densities at the moderate and high harvest site were reduced by 47% and 62%, respectively, when compared to the no harvest site. Model results indicate that, while an increase to the minimum-size limit in 2012 protected a larger portion of the population, that the commercial harvest of snapping turtles in the Commonwealth of Virginia is not sustainable under current state regulations. Our analysis suggests that minimum-size limits of 35.6 cm curved carapace length or greater will maintain viable populations by protecting a larger portion of reproducing snapping turtles within a population.
5

Biology and conservation of the Cape (South African) fur seal Arctocephalus pusillus pusillus (Pinnipedia: Otariidae) from the Eastern Cape Coast of South Africa

Stewardson, Carolyn Louise, carolyn.stewardson@anu.edu.au January 2002 (has links)
[For the Abstract, please see the PDF files below, namely "front.pdf"] CONTENTS. Chapter 1 Introduction. Chapter 2 Gross and microscopic visceral anatomy of the male Cape fur seal with reference to organ size and growth. Chapter 3 Age determination and growth in the male Cape fur seal: part one, external body. Chapter 4 Age determination and growth in the male Cape fur seal: part two, skull. Chapter 5 Age determination and growth in the male Cape fur seal: part three, baculum. Chapter 6 Suture age as an indicator of physiological age in the male Cape fur seal. Chapter 7 Sexual dimorphism in the adult Cape fur seal: standard body length and skull morphology. Chapter 8 Reproduction in the male Cape fur seal: age at puberty and annual cycle of the testis. Chapter 9 Diet and foraging behaviour of the Cape fur seal. Chapter 10(a) The Impact of the fur seal industry on the distribution and abundance of Cape fur seals. Chapter 10(b) South African Airforce wildlife rescue: Cape fur seal pups washed from Black Rocks, Algoa Bay, during heavy seas, December 1976. Chapter 11(a) Operational interactions between Cape fur seals and fisheries: part one, trawl fishing. Chapter 11(b) Operational interactions between Cape fur seals and fisheries: part two, squid jigging and line fishing. Chapter 11(c) Operational interactions between Cape fur seals and fisheries: part three, entanglement in man-made debris. Chapter 12 Concentrations of heavy metals (Cd, Cu, Pb, Ni & Zn) and organochlorine contaminants (PCBs, DDT, DDE & DDD) in the blubber of Cape fur seals. Chapter 13 Endoparasites of the Cape fur seal. Chapter 14(a) Preliminary investigations of shark predation on Cape fur seals. Chapter 14(b) Aggressive behaviour of an adult male Cape fur seal towards a great white shark Carcharodon carcharias. Chapter 15 Conclusions and future directions.

Page generated in 0.0834 seconds