1 |
First-Principles calculations of Core-Level shifts in random metallic alloys: The Transition State ApproachGöransson (Asker), Christian January 2004 (has links)
<p>The overall aim of this thesis is to compare different methods for calculation of Core-Level shifts in metallic alloys. The methods compared are the Initial State model, the Complete screening and the Transition state model. Core-level shifts can give information of chemical bonding and about the electronic structure in solids.</p><p>The basic theory used is the so-called Density-Functional-Theory, in conjunction with the Local-Density Approximation and the Coherent-Potential- Approximation. The metallic alloys used are Silver-Palladium, Copper-Palladium, Copper-Gold and Copper-Platinum, all inface-centered-cubic configuration.</p><p>The complete screening- and the transition-state model are found to be in better agreement with experimental results than those calculated with the initial state model. This is mainly due to the fact that the two former models includes final-state effects, whereas the last one do not. The screening parameters within the Coherent-Potential approximation are also investigated. It is found that the Screened-Impurity Model can extend the validity of the Coherent-Potential-Approximation and increase it's accuracy.</p>
|
2 |
First-Principles calculations of Core-Level shifts in random metallic alloys: The Transition State ApproachGöransson (Asker), Christian January 2004 (has links)
The overall aim of this thesis is to compare different methods for calculation of Core-Level shifts in metallic alloys. The methods compared are the Initial State model, the Complete screening and the Transition state model. Core-level shifts can give information of chemical bonding and about the electronic structure in solids. The basic theory used is the so-called Density-Functional-Theory, in conjunction with the Local-Density Approximation and the Coherent-Potential- Approximation. The metallic alloys used are Silver-Palladium, Copper-Palladium, Copper-Gold and Copper-Platinum, all inface-centered-cubic configuration. The complete screening- and the transition-state model are found to be in better agreement with experimental results than those calculated with the initial state model. This is mainly due to the fact that the two former models includes final-state effects, whereas the last one do not. The screening parameters within the Coherent-Potential approximation are also investigated. It is found that the Screened-Impurity Model can extend the validity of the Coherent-Potential-Approximation and increase it's accuracy.
|
3 |
Influence of Global Composition and Local Environment on the Spectroscopic and Magnetic Properties of Metallic AlloysOlovsson, Weine January 2005 (has links)
<p>Theoretical investigations of spectroscopic and magnetic properties of metallic systems in the bulk, as well as in nanostructured materials, have been performed within the density functional theory. The major part of the present work studies the differences between binding energies of electrons tightly bound to the atoms, the so-called core electrons (in contrast with the valence electrons), that is, core-level binding energy shift (CLS). </p><p>By comparison between corresponding elemental core-levels for atoms situated in different chemical environments we obtain fundamental understanding of bonding properties of materials. The method of choice was the complete screening picture, which includes initial and final state effects on the same footing. The usefulness of CLS stems from that it is sensitive to differences in the chemical environment of an atom, which can be affected on one hand by the global composition of e.g. disordered materials, surfaces and interfaces, and on the other hand by the very local environment around an atom. Here CLSs have been obtained for both components in the fcc random alloys AgPd, CuPd, CuNi, CuPt, CuAu, PdAu, NiPd and NiPt. Moreover the model was extended to the Auger kinetic energy shift for the LMM Auger transition in AgPd alloys. Studies were also applied to the near surface and interface regions of PdMn nano structures on Pd(100), thin CuPd and AgPd films on inert Ru(0001), and at interfaces. The disorder broadening on CLS due to local environment effects was calculated in selected alloys.</p><p>A part of the thesis concern investigations related to the magnetic ordering in Invar alloys, including the influence of local environment effects. A study was made for the dependence of effective exchange parameter on the electron concentration, volume and local chemical composition.</p>
|
4 |
Influence of Global Composition and Local Environment on the Spectroscopic and Magnetic Properties of Metallic AlloysOlovsson, Weine January 2005 (has links)
Theoretical investigations of spectroscopic and magnetic properties of metallic systems in the bulk, as well as in nanostructured materials, have been performed within the density functional theory. The major part of the present work studies the differences between binding energies of electrons tightly bound to the atoms, the so-called core electrons (in contrast with the valence electrons), that is, core-level binding energy shift (CLS). By comparison between corresponding elemental core-levels for atoms situated in different chemical environments we obtain fundamental understanding of bonding properties of materials. The method of choice was the complete screening picture, which includes initial and final state effects on the same footing. The usefulness of CLS stems from that it is sensitive to differences in the chemical environment of an atom, which can be affected on one hand by the global composition of e.g. disordered materials, surfaces and interfaces, and on the other hand by the very local environment around an atom. Here CLSs have been obtained for both components in the fcc random alloys AgPd, CuPd, CuNi, CuPt, CuAu, PdAu, NiPd and NiPt. Moreover the model was extended to the Auger kinetic energy shift for the LMM Auger transition in AgPd alloys. Studies were also applied to the near surface and interface regions of PdMn nano structures on Pd(100), thin CuPd and AgPd films on inert Ru(0001), and at interfaces. The disorder broadening on CLS due to local environment effects was calculated in selected alloys. A part of the thesis concern investigations related to the magnetic ordering in Invar alloys, including the influence of local environment effects. A study was made for the dependence of effective exchange parameter on the electron concentration, volume and local chemical composition.
|
Page generated in 0.116 seconds