• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ab-initio study of disorder broadening of core photoemission spectra in random metallic alloys

Marten, Tobias January 2004 (has links)
<p>Ab-initio results of the core-level shift and the distribution about the average for the 3<i>d</i><sub>5/2</sub> electrons of Ag, Pd and 2<i>p</i><sub>3/2</sub> of Cu are presented for the face-centered-cubic AgPd and CuPd random alloys. The complete screening model, which includes both initial and final states effects in the same scheme, has been used in the investigations. </p><p>The alloys have been modeled with a supercell containing 256 atoms. Density-functional theory calculations are carried out using the locally self consistent Green's function approach. </p><p>Results from the calculations clearly shows that the core-level shift distributions characteristic is Gaussian, but the components reveals a substantial difference in the FWHM (Full-Width at Half-Maximum). Comparison between the experimental and the calculated broadening shows a remarkable agreement.</p>
2

Ab-initio study of disorder broadening of core photoemission spectra in random metallic alloys

Marten, Tobias January 2004 (has links)
Ab-initio results of the core-level shift and the distribution about the average for the 3d5/2 electrons of Ag, Pd and 2p3/2 of Cu are presented for the face-centered-cubic AgPd and CuPd random alloys. The complete screening model, which includes both initial and final states effects in the same scheme, has been used in the investigations. The alloys have been modeled with a supercell containing 256 atoms. Density-functional theory calculations are carried out using the locally self consistent Green's function approach. Results from the calculations clearly shows that the core-level shift distributions characteristic is Gaussian, but the components reveals a substantial difference in the FWHM (Full-Width at Half-Maximum). Comparison between the experimental and the calculated broadening shows a remarkable agreement.
3

Influence of Global Composition and Local Environment on the Spectroscopic and Magnetic Properties of Metallic Alloys

Olovsson, Weine January 2005 (has links)
<p>Theoretical investigations of spectroscopic and magnetic properties of metallic systems in the bulk, as well as in nanostructured materials, have been performed within the density functional theory. The major part of the present work studies the differences between binding energies of electrons tightly bound to the atoms, the so-called core electrons (in contrast with the valence electrons), that is, core-level binding energy shift (CLS). </p><p>By comparison between corresponding elemental core-levels for atoms situated in different chemical environments we obtain fundamental understanding of bonding properties of materials. The method of choice was the complete screening picture, which includes initial and final state effects on the same footing. The usefulness of CLS stems from that it is sensitive to differences in the chemical environment of an atom, which can be affected on one hand by the global composition of e.g. disordered materials, surfaces and interfaces, and on the other hand by the very local environment around an atom. Here CLSs have been obtained for both components in the fcc random alloys AgPd, CuPd, CuNi, CuPt, CuAu, PdAu, NiPd and NiPt. Moreover the model was extended to the Auger kinetic energy shift for the LMM Auger transition in AgPd alloys. Studies were also applied to the near surface and interface regions of PdMn nano structures on Pd(100), thin CuPd and AgPd films on inert Ru(0001), and at interfaces. The disorder broadening on CLS due to local environment effects was calculated in selected alloys.</p><p>A part of the thesis concern investigations related to the magnetic ordering in Invar alloys, including the influence of local environment effects. A study was made for the dependence of effective exchange parameter on the electron concentration, volume and local chemical composition.</p>
4

Influence of Global Composition and Local Environment on the Spectroscopic and Magnetic Properties of Metallic Alloys

Olovsson, Weine January 2005 (has links)
Theoretical investigations of spectroscopic and magnetic properties of metallic systems in the bulk, as well as in nanostructured materials, have been performed within the density functional theory. The major part of the present work studies the differences between binding energies of electrons tightly bound to the atoms, the so-called core electrons (in contrast with the valence electrons), that is, core-level binding energy shift (CLS). By comparison between corresponding elemental core-levels for atoms situated in different chemical environments we obtain fundamental understanding of bonding properties of materials. The method of choice was the complete screening picture, which includes initial and final state effects on the same footing. The usefulness of CLS stems from that it is sensitive to differences in the chemical environment of an atom, which can be affected on one hand by the global composition of e.g. disordered materials, surfaces and interfaces, and on the other hand by the very local environment around an atom. Here CLSs have been obtained for both components in the fcc random alloys AgPd, CuPd, CuNi, CuPt, CuAu, PdAu, NiPd and NiPt. Moreover the model was extended to the Auger kinetic energy shift for the LMM Auger transition in AgPd alloys. Studies were also applied to the near surface and interface regions of PdMn nano structures on Pd(100), thin CuPd and AgPd films on inert Ru(0001), and at interfaces. The disorder broadening on CLS due to local environment effects was calculated in selected alloys. A part of the thesis concern investigations related to the magnetic ordering in Invar alloys, including the influence of local environment effects. A study was made for the dependence of effective exchange parameter on the electron concentration, volume and local chemical composition.

Page generated in 0.0746 seconds