• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2939
  • 1542
  • 635
  • 303
  • 265
  • 94
  • 94
  • 67
  • 59
  • 45
  • 39
  • 36
  • 34
  • 31
  • 25
  • Tagged with
  • 7278
  • 872
  • 554
  • 550
  • 521
  • 494
  • 416
  • 393
  • 379
  • 375
  • 361
  • 338
  • 336
  • 332
  • 327
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Determining the Diagnostic Accuracy of and Interpretation Guidelines for the Complex Trauma Inventory (CTI)

Litvin, Justin M. 12 1900 (has links)
The work group in charge of editing the trauma disorders in the upcoming edition of the International Classification of Diseases (ICD-11) made several changes to the trauma criteria. Specifically, they simplified the criteria for posttraumatic stress disorder (PTSD) and added a new trauma disorder called complex PTSD (CPTSD). To assess the new and newly defined trauma disorders, Litvin, Kaminski and Riggs developed a self-report trauma measure called the Complex Trauma Inventory (CTI). Although the reliability and validity of the CTI has been supported, no empirically-derived cutoff scores exist. We determined the optimal CTI cutoff scores using receiver operating characteristic (ROC) analyses in a diverse sample of 82 participants who experienced trauma and were recruited from an inpatient trauma unit, student veteran organizations, and university classrooms. We used the Clinician-Administered Interview for Trauma Disorders (CAIT) to diagnose the presence of an ICD-11 trauma disorder, and we correlated the results of the CAIT with the Clinician-Administered PTSD Scale for the DSM-5 to establish the convergent validity of the CAIT, r = .945, p < .001. For the ROC analyses, the CTI was used as the index test and the CAIT was used as the criterion test. The area under the curve (AUC) analyses indicated good to excellent effect sizes, AUC = .879 to .904. We identified two sets of cutoff scores for the CTI: the first set prioritized the sensitivity of the CTI scores and ranged from .884 to .962; the second set prioritized the specificity of the CTI scores and the false-positive scores (1-specificity) ranged from .054 to .143. Our study enhanced the utility of the CTI and addressed another need in the trauma field by developing a structured clinical interview (CAIT) that can be used to diagnose the ICD-11 trauma disorders.
202

The use of the Schwarz-Christoffel transformation in finite element mesh generation

Brown, Philip Raymond January 1990 (has links)
This thesis describes a new computer-based method for the generation of finite element meshes. It relies upon the Schwarz-Christoffel transformation, a conformal mapping from conplex variable theory. This mapping is defined and some examples of its use in classical fluid dynamics are given. A practical method for evaluating the parameters defining this transformation is described and emphasis is placed on the efficiency of the solution process in order that coirputer run times may be kept as short as possible. A theorem in Euclidean geometry is stated and proved which links the theory of the Schwarz-Christoffel mapping and the geometrical use to which it is put here. Two such Schwarz-Christoffel transformations are used to construct a mapping between any two polygons. The desirable properties of a finite element mesh are stated and a method is described which atteirpts to generate such a mesh in any sinply-connected two-dimensional region. Numbering of the nodes is an inherent part of the generation scheme, thus ensuring that the optimum bandwidth of the resulting system of linear equations in the analysis phase is obtained. In order to be able to present example meshes, a particular element type, the three-noded triangle, is used and a section describing the enumeration of hexagons, all of whose internal angles are 2n/3, is included. The thesis includes a brief survey of existing methods of two-dimensional mesh generation as well as several example meshes.
203

Statistical mechanics of non-Markovian exclusion processes

Concannon, Robert James January 2014 (has links)
The Totally Asymmetric Simple Exclusion Process (TASEP) is often considered one of the fundamental models of non-equilibrium statistical mechanics, due to its well understood steady state and the fact that it can exhibit condensation, phase separation and phase transitions in one spatial dimension. As a minimal model of traffic flow it has enjoyed many applications, including the transcription of proteins by ribosomal motors moving along an mRNA track, the transport of cargo between cells and more human-scale traffic flow problems such as the dynamics of bus routes. It consists of a one-dimensional lattice of sites filled with a number of particles constrained to move in a particular direction, which move to adjacent sites probabilistically and interact by mutual exclusion. The study of non-Markovian interacting particle systems is in its infancy, due in part to a lack of a framework for addressing them analytically. In this thesis we extend the TASEP to allow the rate of transition between sites to depend on how long the particle in question has been stationary by using non-Poissonian waiting time distributions. We discover that if the waiting time distribution has infinite variance, a dynamic condensation effect occurs whereby every particle on the system comes to rest in a single traffic jam. As the lattice size increases, so do the characteristic condensate lifetimes and the probability that a condensate will interact with the preceding one by forming out of its remnants. This implies that the thermodynamic limit depends on the dynamics of such spatially complete condensates. As the characteristic condensate lifetimes increase, the standard continuous time Monte Carlo simulation method results in an increasingly large fraction of failed moves. This is computationally costly and led to a limit on the sizes of lattice we could simulate. We integrate out the failed moves to create a rejection-free algorithm which allows us to see the interacting condensates more clearly. We find that if condensates do not fully dissolve, the condensate lifetime ages and saturates to a particular value. An unforeseen consequence of this new technique, is that it also allowed us to gain a mathematical understanding of the ageing of condensates, and its dependence on system size. Using this we can see that the fraction of time spent in the spatially complete condensate tends to one in the thermodynamic limit. A random walker in a random force field has to escape potential wells of random depth, which gives rise to a power law waiting time distribution. We use the non-Markovian TASEP to investigate this model with a number of interacting particles. We find that if the potential well is re-sampled after every failed move, then this system is equivalent to the non-Markovian TASEP. If the potential well is only re-sampled after a successful move, then we restore particle-hole symmetry, allow condensates to completely dissolve, and the thermodynamic limit spends a finite fraction of time in the spatially complete state. We then generalised the non-Markovian TASEP to allow for particles to move in both directions. We find that the full condensation effect remains robust except for the case of perfect symmetry.
204

Structural studies of supramolecular host-guest systems

2015 May 1900 (has links)
Abstract This research work details a systematic study of the structure and function of supramolecular host-guest systems. Host-guest inclusion complexes were formed between β-Cyclodextrin (β-CD) and its copolymers (as hosts), with several types of guest molecules both in aqueous solution and the solid state. The research is divided into two themes; (1) structural characterization and dynamic properties of the inclusion compounds of β-CD with various guest systems in aqueous solution and the solid phase, and (2) heterogeneous adsorption and structural studies of β-CD based copolymers with various guest systems in aqueous solutions. The guest systems include alkyl and perfluoroalkyl carboxylates, perfluoroalkyl sulfonate, and p-nitrophenol (PNP) at variable experimental conditions. In the first theme (chapter 2-5), host-guest complexes in the solid state were prepared using dissolution and slow cool methods at variable host/guest mole ratios (i.e., 1:1 and 2:1). The complexes were further characterized using 19F/13C DP/MAS and CP/MAS solid-state NMR spectroscopy. The solution state complexes were prepared in D2O for structural characterization using 1H/19F NMR spectroscopy. The NMR studies were complemented using FT-IR, thermal analyses (DSC, and TGA), and powder X-ray diffraction (PXRD). Evidence for the formation of host-guest inclusion compounds (ICs) was provided using CP/MAS solids NMR spectroscopy and complexation-induced chemical shift (CIS) values of 1H/19F nuclei in aqueous solution. The β-CD/PFC ICs displayed variable guest geometry and hydration states as determined by the host-guest stoichiometry and the conformation of the guest. PFOA and SPFO form 1:1 and 2:1 ICs with β-CD, wherein the guest adopts a range of gauche and trans conformations, respectively. 1:1 host-guest complexes were concluded for short perfluorocarbon chains (i.e., PFBA) where the gauche conformation of the PFC guest in the bound state was favoured. In the second theme (chapters 6–8), β-CD based copolymers were used as host materials. The structural characterization of a soluble poly-CD material (known as HDI-1) revealed that the solution behaviour of such polymeric hosts are sensitive to the presence of guest compounds such as p-nitrophenol (PNP) (i.e. chemo-responsive), as well as temperature variations (i.e. thermo-responsive). The host-guest chemistry of the soluble poly-CD material, as studied by 2-D solution NMR and induced circular dichroism (ICD) spectroscopy, indicates that PNP was bound within the cavity sites of β-CD and the interstitial domains of the copolymer (cf. Scheme 1.6 and chapter 6). The observed responsive nature of such polymeric host materials to temperature variation and chemical potential resembles behaviour characteristic of ‘smart materials’. Herein, ‘smart materials’ refer to systems which are responsive to external stimuli (e.g. temperature and chemical). The adsorption properties of the soluble (HDI-1) and insoluble (HDI-3 and -6) poly-CD adsorbents with octyl and perfluorooctyl carboxylate and sulfonate anions were estimated using the Sips and BET models. The hydrocarbon (HC) and fluorocarbon (FC) anions form monolayer and multilayer structures at the surface of the polymeric adsorbents, respectively. The formation of layered structures was controlled by the relative hydrophobicity of the alkyl/perfluoroalkyl chains and their mutual miscibility with the adsorbent surface. Other factors include the inductive effects of the alkyl/perfluoroalkyl head groups and their interactions with aqueous solvent or dipolar domains of the adsorbent surface. The adsorbed species at the liquid-solid interface were characterized using FT-IR spectroscopy, thermal analyses, and contact angle.
205

Light-emitting platinum (II) and gold (I) complexes containing cyclometalated and alkynyl ligands

Lu, Wei, 陸為 January 2003 (has links)
published_or_final_version / abstract / toc / Chemistry / Doctoral / Doctor of Philosophy
206

Design, structures, spectroscopic, and photophysical properties of supramoleculsar gold(I), platinum(II), and palladium(II) complexes

曾炳堯, Tzeng, Biing-chiau. January 1998 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
207

Substitutions of four-coordinated complexes

王輝泰, Wong, Fai-tai. January 1969 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
208

The synthesis and coordination chemistry of mixed donor pyridine/phenol and pyridine/sulfonamide ligands

Otter, Carl A. January 1998 (has links)
No description available.
209

In line fibre optic laser Doppler velocimeter using Bragg grating interferometric filters as frequency to intensity transducers

Chehura, Edmon January 2002 (has links)
No description available.
210

Compiler-directed energy savings in superscalar processors

Jones, Timothy M. January 2006 (has links)
Superscalar processors contain large, complex structures to hold data and instructions as they wait to be executed. However, many of these structures consume large amounts of energy, making them hotspots requiring sophisticated cooling systems. With the trend towards larger, more complex processors, this will become more of a problem, having important implications for future technology. This thesis uses compiler-based optimisation schemes to target the issue queue and register file. These are two of the most energy consuming structures in the processor. The algorithms and hardware techniques developed in this work dynamically adapt the processor's resources to the changing program phases, turning off parts of each structure when they are unused to save dynamic and static energy. To optimise the issue queue, the compiler analysis tracks data dependences through each program procedure. It identifies the critical path through each program region and informs the hardware of the minimum number of queue entries required to prevent it slowing down. This reduces the occupancy of the queue and increases the opportunities to save energy. With just a 1.3% performance loss, 26% dynamic and 32% static energy savings are achieved. Registers can be idle for many cycles after they are last read, before they are released and put back on the free-list to be reused by another instruction. Alternatively, they can be turned off for energy savings. Early register releasing can be used to perform this operation sooner than usual, but hardware schemes must wait for the instruction redefining the relevant logical register to enter the pipeline. This thesis presents an exploration of compiler-directed early register releasing. The compiler can exactly identify the last use of each register and pass the information to the hardware, based on simple data-flow and liveness analysis. The best scheme achieves 15% dynamic and 19% static energy savings. Finally, the issue queue limiting and early register releasing schemes are combined for energy savings in both processor structures. Four different configurations are evaluated bringing 25% to 31% dynamic and 19% to 34% static issue queue energy savings and reductions of 18% to 25% dynamic and 20% to 21% static energy in the register file.

Page generated in 0.0409 seconds