Spelling suggestions: "subject:"complexe dde De sham"" "subject:"complexe dde De ham""
1 |
Cohomologie des variétés feuilletéesJaloux, Christophe 20 December 2008 (has links) (PDF)
A toute fonction de Morse généralisée f sur un feuilletage mesuré, nous associons un complexe longitudinal dont nous montrons qu'il calcule la cohomologie longitudinale introduite par A. Connes. L'espace d'indice q de ce complexe est donné par le champ d'espaces $E^q=(l^2(C^q \cap L))_L$ , où C^q est la variété des points critiques longitudinaux d'indice q de f, et où L désigne la feuille générique . Les différentielles $\delta^q:E^q \rightarrow E^{q+1}$ expriment comment l'orientation de la variété instable se transporte le long d'une trajectoire du champ de gradient feuilleté reliant un point critique d'indice q à un point critique d'indice q+1. Pour montrer que ce complexe calcule la cohomologie longitudinale, nous l'identifions au complexe obtenu comme limite, lorsque tau tend vers l'infini, du complexe feuilleté $(W^q_{\tau,L},d^q_{\tau,L})$ considéré par A. Connes et T. Fack. Ce travail étend au cas des feuilletages celui de B. Helffer et J. Sjörstrand.
|
2 |
Singularités lagrangiennesSevenheck, Christian 27 January 2003 (has links) (PDF)
Dans cette thèse, nous développons une théorie de<br />déformation pour les singularités lagrangiennes. Pour une singularité<br />lagrangienne, un complexe de modules à différentielle non-linéaire,<br />dont la première cohomologie est isomorphe à l'espace de déformations<br /> infinitésimales de la singularité, est défini. La cohomologie en degré deux contient des informations sur les obstructions. Ce<br />complexe est relié à la théorie des modules différentiels. Nous<br />démontrons que, sous une condition géométrique, sa cohomologie est<br />constituée de faisceaux constructibles. Nous décrivons une méthode<br />utilisant du calcul formel pour déterminer cette cohomologie pour<br />des surfaces quasi-homogènes.
|
Page generated in 0.0794 seconds