1 |
A novel approach for the improvement of error traceability and data-driven quality predictions in spindle unitsRangaraju, Adithya January 2021 (has links)
The lack of research on the impact of component degradation on the surface quality of machine tool spindles is limited and the primary motivation for this research. It is common in the manufacturing industry to replace components even if they still have some Remaining Useful Life (RUL), resulting in an ineffective maintenance strategy. The primary objective of this thesis is to design and construct an Exchangeable Spindle Unit (ESU) test stand that aims at capturing the influence of the failure transition of components during machining and its effects on the quality of the surface. Current machine tools cannot be tested with extreme component degradation, especially the spindle, since the degrading elements can lead to permanent damage, and machine tools are expensive to repair. The ESU substitutes and decouples the machine tool spindle to investigate the influence of deteriorated components on the response so that the machine tool spindle does not take the degrading effects. Data-driven quality control is another essential factor which many industries try to implement in their production line. In a traditional manufacturing scenario, quality inspections are performed to check if the parameters measured are within the nominal standards at the end of a production line or between processes. A significant flaw in the traditional approach is its inability to map the degradation of components to quality. Condition monitoring techniques can resolve this problem and help identify defects early in production. This research focuses on two objectives. The first one aims at capturing the component degradation by artificially inducing imbalance into the ESU shaft and capturing the excitation behavior during machining with an end mill tool. Imbalance effects are quantified by adding mass onto the ESU spindle shaft. The varying effects of the mass are captured and characterized using vibration signals. The second objective is to establish a correlation between the surface quality of the machined part with the characterized vibrations signals by Bagged Ensemble Tree (BET) machine learning models. The results show a good correlation between the surface roughness and the accelerometer signals. A comparison study between a balanced and imbalanced spindle along with its resultant surface quality is presented in this research. / Bristen på forskning om inverkan av komponentnedbrytning på ytkvaliteten hos verktygsmaskiner är begränsad och den primära motivationen för denna forskning. Det är vanligt inom tillverkningsindustrin att byta ut komponenter även om de fortfarande har en viss återstående livslängd, vilket resulterar i en ineffektiv underhållsstrategi. Det primära syftet med denna avhandling är att designa och konstruera en utbytbar spindelenhetstestsats som syftar till att fånga inverkan av komponentbrottsövergång under bearbetning och dess effekter på ytkvaliteten. Nuvarande verktygsmaskiner kan inte testas med extrem komponentnedbrytning, speciellt spindeln, eftersom de nedbrytande elementen kan leda till permanenta skador och verktygsmaskiner är dyra att reparera. Den utbytbara spindelenheten ersätter och kopplar bort verktygsmaskinens spindel för att undersöka effekten av försämrade komponenter på responsen så att verktygsmaskinens spindel inte absorberar de nedbrytande effekterna. Datadriven kvalitetskontroll är en annan viktig faktor som många industrier försöker implementera i sin produktionslinje. I ett traditionellt tillverkningsscenario utförs kvalitetsinspektioner för att kontrollera om de uppmätta parametrarna ligger inom de nominella normerna i slutet av en produktionslinje eller mellan processer. En betydande brist med det traditionella tillvägagångssättet är dess oförmåga att kartlägga komponenternas försämring till kvalitet. Tillståndsövervakningstekniker kan lösa detta problem och hjälpa till att identifiera defekter tidigt i produktionsprocessen. Denna forskning fokuserar på två mål. Den första syftar till att fånga komponentnedbrytning genom att artificiellt inducera obalans i axeln på den utbytbara spindelenheten och fånga excitationsbeteendet under bearbetning med ett fräsverktyg. Obalanseffekter kvantifieras genom att tillföra massa till spindelaxeln på den utbytbara spindelenheten. Massans varierande effekter fångas upp och karakteriseras med hjälp av vibrationssignaler. Det andra målet är att etablera en korrelation mellan ytkvaliteten hos den bearbetade delen med de karakteriserade vibrationssignalerna från Bagged Ensemble Tree maskininlärningsmodeller. Resultaten visar en god korrelation mellan ytjämnheten och accelerometerns signaler. En jämförande studie mellan en balanserad och obalanserad spindel tillsammans med dess resulterande ytkvalitet presenteras i denna forskning.
|
2 |
From Log-Data to Regressive Machine Learning Models for Predictive Maintenance : A case studyvan Dam, Lucas Christiaan January 2022 (has links)
There are three ways to deal with component failure: reactive maintenance, preventive maintenance, and predictive maintenance. Reactive maintenance is to repair only once something breaks. Preventive maintenance is to repair before it breaks, independent of actual wear. Predictive maintenance is performed on the basis of real time operational data, repairing when components cross a certain degradation threshold. With classification models one can determine the health state of a component. Regression models, on the other hand, allow the user to calculate a more precise estimate of remaining useful life. Previous research on regression models have exclusively used sensory data while classification models have used both sensory data as well as log-data. Research on predictive maintenance using regression models have found most success using SVM regression, decision trees, random forest regression, artificial neural networks and LSTM models. Companies have more and more data to their disposal about the performance of their machines, but usually in the form of log-data. The goal of this research is to find if it is possible to use log-data for regression models. If this is the case, more sophisticated regression models can be used to apply predictive maintenance more accurately on a broader scale than is currently the case. The project was performed through a case study at a company in the semiconductor industry in the Netherlands, with years of log-data of their product that are gradually degrading over time. After quantifying the log-data and trying all kinds of different regression models in combination with different time scales, the results were unilaterally abysmal and were unable to make any decent prediction. The reason for this according to several experts in the field of data science is that there was no in depth understanding of the data. They say it is required to have an integral understanding of the log-data and to closely collaborate with field engineers who know the data in and out. If a field engineer can say something about the degradation of a machine using only the log-data, a machine learning model can do it too. If a machine learning model is unable to purposefully overfit on the training data and the results are bad, there is no signal in the dataset and the task is impossible. It does not matter if the data was originally sensory or log-based, the only thing that matters is understanding what the data means and the presence of the degradation signal within.
|
Page generated in 0.1172 seconds