• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 16
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Shear Connection for a Portable Composite Bridge

Bowser, Matthew George January 2010 (has links)
Bridges consisting of steel plate girders and composite concrete deck slabs are common throughout North America. For a typical highway application, these composite bridges are constructed with a cast-in-place concrete deck; however, some composite bridge designs utilize precast concrete deck panels. For example, bridges built on temporary access roads which service resource industries throughout Western Canada often employ composite bridges that consist of steel plate girders and precast concrete deck panels. For spans between 18- to 36 metres, permanent bridges currently present the best economy; although, portable structures would be preferred on these temporary roads so that the bridge could be relocated after the road is decommissioned. This study proposes a shear connection between steel plate girders and precast concrete deck panels, which allows fastening, and unfastening, of these two components enabling a portable composite bridge. In total, ten connection concepts were developed during this study and a multi-criteria assessment was performed to evaluate each concept respectively. Based on the outcome of this multi-criteria assessment, and subsequent sensitivity analysis, a preferred connection was established and a finite element model was developed for the analysis of composite bridge girders. For the initial development of the finite element model, the test set up and experimental findings of a test program by other researchers was employed so that the finite element analysis results could be compared to those reported from a physical experiment. Following this initial finite element analysis, full scale composite bridge girders were modelled so that the influence of the proposed shear connection on the behaviour of a composite girder could be studied. The model was verified for its ability to capture the possible effects of flange buckling, web buckling, and lateral torsional buckling of the steel plate girder. It was then confirmed that these local responses do not influence the performance of the proposed portable composite bridge system. A parametric study was also performed in which the effect of shear connection stiffness and spacing on the behaviour of the composite girder was investigated. This parametric study allowed the sensitivity of the proposed connection to variations in these two parameters to be assessed and also allowed preliminary study of the performance of composite girders with alternative shear connection designs.
2

Development of a Shear Connection for a Portable Composite Bridge

Bowser, Matthew George January 2010 (has links)
Bridges consisting of steel plate girders and composite concrete deck slabs are common throughout North America. For a typical highway application, these composite bridges are constructed with a cast-in-place concrete deck; however, some composite bridge designs utilize precast concrete deck panels. For example, bridges built on temporary access roads which service resource industries throughout Western Canada often employ composite bridges that consist of steel plate girders and precast concrete deck panels. For spans between 18- to 36 metres, permanent bridges currently present the best economy; although, portable structures would be preferred on these temporary roads so that the bridge could be relocated after the road is decommissioned. This study proposes a shear connection between steel plate girders and precast concrete deck panels, which allows fastening, and unfastening, of these two components enabling a portable composite bridge. In total, ten connection concepts were developed during this study and a multi-criteria assessment was performed to evaluate each concept respectively. Based on the outcome of this multi-criteria assessment, and subsequent sensitivity analysis, a preferred connection was established and a finite element model was developed for the analysis of composite bridge girders. For the initial development of the finite element model, the test set up and experimental findings of a test program by other researchers was employed so that the finite element analysis results could be compared to those reported from a physical experiment. Following this initial finite element analysis, full scale composite bridge girders were modelled so that the influence of the proposed shear connection on the behaviour of a composite girder could be studied. The model was verified for its ability to capture the possible effects of flange buckling, web buckling, and lateral torsional buckling of the steel plate girder. It was then confirmed that these local responses do not influence the performance of the proposed portable composite bridge system. A parametric study was also performed in which the effect of shear connection stiffness and spacing on the behaviour of the composite girder was investigated. This parametric study allowed the sensitivity of the proposed connection to variations in these two parameters to be assessed and also allowed preliminary study of the performance of composite girders with alternative shear connection designs.
3

Innovative Shear Connections for the Accelerated Construction of Composite Bridges

Chen, Yu-Ta January 2013 (has links)
Accelerated bridge construction methods are being progressively used to construct and replace bridges in North America. Unlike traditional bridge construction methods, accelerated bridge construction methods allow bridges to be built in a shortened period of time on the construction site. These methods reduce the road closure time and the traffic disruption that are associated with bridge construction. One of these methods is carried out by prefabricating the bridge elements offsite and then assembling them onsite in a time-efficient way to build the bridge. This construction method can be used to build steel-precast composite bridges, where steel plate girders are connected to full-depth precast concrete deck panels. For the expeditious construction of composite bridges, a proper shear connection detail is needed to develop composite action between the steel plate girders and the precast concrete deck panels. This research project investigated two types of shear connection that would accelerate the construction of steel-precast composite bridges. First, finite element analysis was used to study the behaviour of composite bridge girders with panel end connections. The girders were analyzed for their load-displacement behaviour, cross-sectional stress and strain profile, and connection force distributions. Secondly, experimental push tests were conducted to study the load-slip behaviour of bolted connections. The effects of steel-concrete interface condition, bolt diameter and bolt tension on the shear capacity of bolted connections were analyzed. Based on the finite element analysis results, it is concluded that the panel end connected girder exhibited strong composite action at service and ultimate load. The level of composite action decreased slightly when the panel end connection stiffness was reduced by a factor of ten. Based on the experimental results, it is concluded that the total shear capacity of the bolted connection is the sum of the friction resistance and the bolt dowel action resistance. The friction resistance of the connection depends on the interface condition and the bolt clamping force. An analytical model that can predict the ultimate shear capacity of bolted connections has been developed and recommended. The proposed model is shown to give reliable predictions of the experimental results. It should be noted that bolted connections exhibit good structural redundancy because the bolt fracture failures do not happen simultaneously.
4

Adhesive Bonding of Concrete-steel Composite Bridges by Polyurethane Elastomer

Cheung, Billy Siu Fung 30 July 2008 (has links)
This thesis is motivated by the use of full-depth, precast, prestressed concrete panels to facilitate deck replacement of composite bridges. The shear pockets required in using convention shear stud connections, however, can cause durability problems. The objective of this study is to investigate the possibility of eliminating the use of shear studs, and adhesively bond the concrete and steel sections. The feasibility of the developed polyurethane adhesive joint is defined based on the serviceability and ultimate limit states. The joint must have sufficient stiffness that additional deflection due to slip must not be excessive. The adhesive and bond must also have sufficient strength to allow the development of the full plastic capacity of the composite section. The use of the developed adhesive joint in typical composite bridges was found to be feasible. The behaviour under live load was found to be close to a fully composite section.
5

Adhesive Bonding of Concrete-steel Composite Bridges by Polyurethane Elastomer

Cheung, Billy Siu Fung 30 July 2008 (has links)
This thesis is motivated by the use of full-depth, precast, prestressed concrete panels to facilitate deck replacement of composite bridges. The shear pockets required in using convention shear stud connections, however, can cause durability problems. The objective of this study is to investigate the possibility of eliminating the use of shear studs, and adhesively bond the concrete and steel sections. The feasibility of the developed polyurethane adhesive joint is defined based on the serviceability and ultimate limit states. The joint must have sufficient stiffness that additional deflection due to slip must not be excessive. The adhesive and bond must also have sufficient strength to allow the development of the full plastic capacity of the composite section. The use of the developed adhesive joint in typical composite bridges was found to be feasible. The behaviour under live load was found to be close to a fully composite section.
6

Innovative Shear Connections for the Accelerated Construction of Composite Bridges

Chen, Yu-Ta January 2013 (has links)
Accelerated bridge construction methods are being progressively used to construct and replace bridges in North America. Unlike traditional bridge construction methods, accelerated bridge construction methods allow bridges to be built in a shortened period of time on the construction site. These methods reduce the road closure time and the traffic disruption that are associated with bridge construction. One of these methods is carried out by prefabricating the bridge elements offsite and then assembling them onsite in a time-efficient way to build the bridge. This construction method can be used to build steel-precast composite bridges, where steel plate girders are connected to full-depth precast concrete deck panels. For the expeditious construction of composite bridges, a proper shear connection detail is needed to develop composite action between the steel plate girders and the precast concrete deck panels. This research project investigated two types of shear connection that would accelerate the construction of steel-precast composite bridges. First, finite element analysis was used to study the behaviour of composite bridge girders with panel end connections. The girders were analyzed for their load-displacement behaviour, cross-sectional stress and strain profile, and connection force distributions. Secondly, experimental push tests were conducted to study the load-slip behaviour of bolted connections. The effects of steel-concrete interface condition, bolt diameter and bolt tension on the shear capacity of bolted connections were analyzed. Based on the finite element analysis results, it is concluded that the panel end connected girder exhibited strong composite action at service and ultimate load. The level of composite action decreased slightly when the panel end connection stiffness was reduced by a factor of ten. Based on the experimental results, it is concluded that the total shear capacity of the bolted connection is the sum of the friction resistance and the bolt dowel action resistance. The friction resistance of the connection depends on the interface condition and the bolt clamping force. An analytical model that can predict the ultimate shear capacity of bolted connections has been developed and recommended. The proposed model is shown to give reliable predictions of the experimental results. It should be noted that bolted connections exhibit good structural redundancy because the bolt fracture failures do not happen simultaneously.
7

Fiber Reinforced Polymer Composite (Frpc) Bridges And Their Construction Perspectives In Lithuania / Pluoštais armuoti polimeriniai kompozitiniai tiltai ir jų Statybos perspektyvos lietuvoje

Ručinskas, Robertas 20 June 2011 (has links)
In this thesis technical and economic analysis of Fiber Reinforced Composite Polymer (FRPC) bridges was performed. Current condition and main issues of conventional bridges in the world and in Lithuania are assessed, main defects are indicated. In this thesis FRPC is considered as an alternative solution for bridge construction. Application range of FRPC for bridge construction is classified and actual bridge examples are analysed. Further, main properties of FRPC are introduced, taking into account influence of material composition, manufacturing technology, long term effects and advantages over conventional materials. Load-deformation, failure behavior analysis of FRPC bridge decks and bridges revealed advantages over conventional bridge solutions and design issues. In addition, existing codes for FRPC bridge design are analysed, design peculiarities are emphasized and current problems are identified. Performed Life Cycle Cost (LCC) analysis revealed financial viability of FRPC bridges. Finally, main conclusions and problems to be solved are stated and FRPC application potential for bridges construction in Lithuania is suggested. Performed analysis revealed that FRPC application for bridges construction is technically and economically viable solution. / Šiame magistriniame darbe atlikta Pluoštais Armuotų Polimerinių Kompozitinių (PAPK) tiltų techninė ir ekonominė analizė. Nagrinėjama esama pasaulio ir Lietuvos tiltų būklė, nustatytos būdingos problemos bei defektai. Šiame darbe PAPK yra svarstoma kaip alternativi medžiaga tiltų statybai. Atlikta PAPK panaudojimo klasifikacija tiltų statybai, analizuojami esami PAPK tiltų pavyzdžiai bei jų paplitimas. Toliau nustatomos mechaninės bei fizinės PAPK savybės, atsižvelgiant į medžiagos sandarą, gamybos būdą, ilagalaikius veiksnius ir privalumus lyginant su plienu ir gelžbetoniu. Pagal atliktą PAPK tiltų ir perdangų apkrovos-deformacijų, suirimo analizę nustatyta elementų elgsena, pateiktos pagrindinės problemos bei privalumai palyginus su tradiciniais tiltų sprendiniais. Taip pat išnagrinėtos PAPK tiltų projektavimų normos, pateikti skaičiavimų ypatumai bei problemos. Paskutiniame skyriuje atlikta Gyvavimo Ciklo Kainos analizė parodė PAPK tiltų finansinį įgyvendinamumą. Darbo pabaigoje pateikiamos pagrindinės išvados, rezultatai, spręstinos problemos bei PAPK tiltų panaudojimo rekomendacijos Lietuvoje. Atlikta techninė ir ekonominė analizė parodė, jog PAPK panaudojimas tiltų statybai yra techniškai ir ekonomiškai efektyvus sprendimas.
8

Influence of precast concrete panel surface condition on behavior of composite bridge decks at skewed expansion joints

Donnelly, Kristen Shawn 03 September 2009 (has links)
Following development of rectangular prestressed, precast concrete panels (PCP) that could be used as stay-in-place formwork adjacent to expansion joints in bridge decks, the Texas Department of Transportation (TxDOT) initiated a research effort to investigate the use of PCP units at skewed expansion joints. The fabrication of trapezoidal PCP units was studied and the response of skewed panels with 45° and 30° skew angles was obtained. The panels were topped with a 4 in. thick cast-in-place (CIP) slab to complete the bridge deck. Specimens with 45° skew performed well under service and overload levels. The deck failed in diagonal shear at loads well over the design level loads. However, two 30° specimens failed prematurely by delamination between the topping slab and the PCP. The cause of the delamination was insufficient shear transfer capacity between the PCP and CIP topping slab. For the specimens tested at a square end, the failure mode was punching shear at high loads for all specimens. The surface condition of the PCP was specified to have a “broom finish” and the panel was to have a saturated surface dry (SSD) condition so that PCP units would not leach moisture from the CIP topping slab. Neither of these conditions was satisfied in the two panels that failed prematurely. Although the panels were specified to have a broom finish, the panel surface had regions that were quite smooth. The objective of this research project was to reinvestigate the response of 30° PCP at an expansion joint following specified procedures for finish and moisture conditions. One specimen was constructed with a rectangular panel placed between two 30° skewed panels. These panels had a much rougher surface texture than the previously tested panels that failed in delamination. The skewed ends of the specimen were subjected to monotonically increasing static loads at midspan of the panel ends. The panels failed in diagonal shear and the response of the tested specimen confirmed that the panel surface roughness, and not the skew angle, caused delamination with the previously tested specimens. While TxDOT does not currently specify a minimum panel surface roughness, a surface roughness of approximately 1/4 in. is required in some codes for developing composite action. In addition, wetting the panels to a SSD condition prior to placement of the topping slab further enhances shear transfer between the topping slab and the PCP. / text
9

Simply supported composite railway bridge: a comparison of ballasted and ballastless track alternatives : Case of the Banafjäl Bridge

Gillet, Guillaume January 2010 (has links)
No description available.
10

Evaluation of performance of composite bridge deck panels under static and dynamic loading and environmental conditions

Jacobs, Bradley L. January 2001 (has links)
No description available.

Page generated in 0.1243 seconds