• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrical Characteristics of Aged Composite Insulators

Zhou, JianBin January 2003 (has links)
Composite insulators are widely being used in power industry to alternate traditional porcelain-based insulators for their advantages, including better pollution performance, low maintenance cost, light weight, compact line design. However, due to the short application history and experience, the degradation of composite insulators in natural environment is a big concern for the power utilities. The knowledge on the degradation of composite insulators is being studied world wide. The methods to assess the working conditions of composite insulators are being studied and created. In Queensland University of Technology (QUT), the approach based on chemical analysis methods was first developed. The work in this thesis based on the previous research work is focused on correlating electrical characteristics with chemical analysis results of the composite insulators and physical observations results. First,the electrical characteristics of composite insulators were presented and analysed, including leakage current, cumulative current, peaks of leakage current, the statistic results of the leakage current. Among them, the characteristics of leakage current were mainly studied. The shape of waveforms was found to relate to the degree of discharge activities of the composite insulators. The waveforms analysed by FFT revealed that the odd harmonic components became obvious during the discharge activities. The correlations between the electrical characteristics of composite insulators and chemical analysis results showed that the composition of composite insulators plays significant roles in terms of electrical performance. The oxidation index (O.I.) and the ester/ketone ratio (E/K) differentiated the different degradation reasons of the composite insulators in the test conditions. Finally, the thesis presents one approach, which aims to assess the surface conditions of composite insulators in an easy manner and in short time.
2

Degradation of composite insulators at material interfaces

Bastidas Erazo, Pablo Daniel January 2018 (has links)
High-voltage (HV) outdoor composite insulators used in transmission lines are made of two polymers, comprising the core and housing, bonded together with metallic end-connections. The interface between these polymers is parallel to the electric field, which makes the insulators more prone to interfacial problems at these common points [1]. If interfacial ageing occurs, degradation and catastrophic breakdown can result [2]. Therefore, the design reliability of outdoor composite insulators depends on the high-strength bond between the core and the housing [3],[4]. Research findings by Kutil and Froshlic [5] indicate that delaminated areas, cavities and/or micro cracks in the medium are enough to initiate streamer discharges along the interface that are capable of degrading both insulating materials. The heat, UV radiation, and high-energy electrons produced from such discharge activity resulted in the growth of carbon paths along the interface, known as ‘tracking’, ultimately causing failure [6]. This investigation focuses on the development of tracking between silicone rubber and epoxy resin, with a view to replicating the tracking phenomena seen within composite insulators in service. A fine wire is placed between the dielectrics materials to enhance the local electric field magnitude and initiate discharge processes. The resulting partial discharge (PD) activity has been monitored. This Information has been used to understand the inception and propagation of the interfacial tracking. A strong relationship was found between maximum PD magnitude and track length. PD patterns and unique detailed images of the interfacial tracking development, allowed identification of the growth characteristics of interfacial channels and phases of tracking growth. Furthermore, a correlation in the mechanisms of interfacial degradation was found between the lab-fabricated samples and commercial composite rods. Finally, a growth model of interfacial ageing has been developed with the information from FEA models, PD patterns and the detailed images of tracking growth. The physical structure and chemical analysis of interfacial tracking is also disclosed to provide an insight into interfacial ageing mechanisms that occur in the composite insulators under electrical stress.
3

Electric Potential and Field Calculation of HVDC Composite Insulators by Charge Simulation Method

January 2013 (has links)
abstract: High Voltage Direct Current (HVDC) technology is being considered for several long distance point-to-point overhead transmission lines, because of their lower losses and higher transmission capability, when compared to AC systems. Insulators are used to support and isolate the conductors mechanically and electrically. Composite insulators are gaining popularity for both AC and DC lines, for the reasons of light weight and good performance under contaminated conditions. This research illustrates the electric potential and field computation on HVDC composite insulators by using the charge simulation method. The electric field is calculated under both dry and wet conditions. Under dry conditions, the field distributions along the insulators whose voltage levels range from 500 kV to 1200 kV are calculated and compared. The results indicate that the HVDC insulator produces higher electric field, when compared to AC insulator. Under wet conditions, a 500 kV insulator is modeled with discrete water droplets on the surface. In this case, the field distribution is affected by surface resistivity and separations between droplets. The corona effects on insulators are analyzed for both dry and wet conditions. Corona discharge is created, when electric field strength exceeds the threshold value. Corona and grading rings are placed near the end-fittings of the insulators to reduce occurrence of corona. The dimensions of these rings, specifically their radius, tube thickness and projection from end fittings are optimized. This will help the utilities design proper corona and grading rings to reduce the corona phenomena. / Dissertation/Thesis / M.S. Electrical Engineering 2013
4

Konstrukce navíječky kompozitního izolátoru / Design of composite isolator winder

Menšík, Martin January 2018 (has links)
The aim of this master thesis is the construction of a single-purpose machine used for reeling of composite insulator. In the first part is described the technology of reeling completed by the analysis of used components. Based on the findings, the final constructional version with necessary calculations is stated. The result of this thesis is a 3D model of the chosen design together with drawings and calculations of given parts.
5

Etude comportementale des gouttelettes d'eau déposées sur la surface d'un isolateur composite haute tension en présence du champ électrique / Study of the behavior of water droplets deposited on high voltage composite insulator surface in presence of the electric field

Ndoumbe, Jean 11 March 2014 (has links)
Ce travail porte sur l’étude expérimentale et théorique du comportement des gouttelettes d’eau (instabilité, déformation, coalescence), déposées à la surface d’un isolateur composite haute tension, en présence d’un champ électrique. La déformation des gouttelettes d’eau est étudiée en fonction de plusieurs paramètres tels que le volume, le nombre et la conductivité des gouttelettes ainsi que leurs positions par rapport aux électrodes. Un intérêt particulier est porté à la charge accumulée sur la surface d’une gouttelette. L’influence des gouttelettes sur la répartition du champ électrique ainsi que le facteur d’amplification du champ électrique par une méthode numérique sont étudiés. Une formulation mathématique de la déformation d’une gouttelette d’eau posée sur une surface d’isolateur est développée. Les mécanismes ainsi que les paramètres impliqués dans la coalescence d’une paire de gouttelettes d’eau sous l’effet du champ électrique sont également traités. Un modèle mathématique permettant d’analyser la coalescence d’une paire de gouttelettes d’eau posées sur la surface d’un isolateur en présence du champ électrique est proposé. Ce modèle est basé sur une approche à interface diffuse qui consiste essentiellement en un couplage entre les équations de Navier-Stokes, le calcul de la force électrique et une équation de type Cahn-Hilliard décrivant l’évolution de l’interface en prenant en compte les phénomènes de tensions superficielles. La démarche suivie et les résultats présentés dans ce travail ouvrent de multiples perspectives tant d’un point de vue expérimental que d’un point de vue de la modélisation et de la simulation numérique des phénomènes physiques intervenant sur des isolateurs de lignes de transport et de distribution de l’énergie électrique dans des conditions d’humidité (pluie, rosée ...). / This work is devoted to experimental and theoretical study of the behavior of water droplets (instability, deformation, coalescence), located on the surface of a high voltage composite insulator, in presence of electric field. The deformation of droplets is investigated according to several parameters such as volume, number and conductivity of the droplets as well as their positions with respect to the electrodes. A particular interest is focused on the electric charge accumulated on the droplet surface. The droplet influences on the electric field distribution as well as the amplification factor of the electric field are studied by a numerical method. A mathematical formulation of the deformation of water droplet located on a surface of insulator is developed. The mechanisms as well as parameters involved in coalescence of a pair of water droplets under the electric field stress are also investigated. A mathematical model is developed for analyzing the coalescence of a pair of water droplets sitting on the surface of an insulator in presence of the electric field. It is based on a diffuse interface model that essentially consists of a coupling between Navier-Stokes equations, the computing of electric force and a Cahn-Hilliard type equation describing the interface evolution including capillary phenomena. The approach followed and the results presented in this work open several perspectives as well from an experimental point of view as from a point of view of modeling and numerical simulation of physical phenomena affecting insulators of high voltage transport and distribution lines in humidity conditions (rain, dew...).

Page generated in 0.0577 seconds