• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Biomimetic Scaffold for Ligament Tissue Engineering

Hayami, James W.S. 22 June 2011 (has links)
The focus of this thesis was to design a scaffold for in vitro culture that would mimic the structure of the native ligament in order to influence primary ligament cells towards the production of ligament-specific tissue. A major part of this project was material selection and subsequent testing to determine if the chosen materials were suitable for the scaffold design. A 20:80 (CL:DLLA) poly(ε-caprolactone-co-D,L-lactide) copolymer (PCLDLLA) was synthesized and electrospun with sub-cellular fibre diameters. The fibres were manufactured into aligned arrays to mimic the collagen fibrils of the ligament. To enhance cell and protein adhesion properties, the PCLDLLA polymer surface was modified using a base catalyzed etching technique. A photocrosslinked methacrylated glycol chitosan (M-GC) hydrogel was used to deliver encapsulated ligament cells to the biomimetic scaffold and mimic the hydrated proteoglycan matrix portion of the ligament. The scaffolds were cultured in vitro for a 4 week period and characterized using immunohistochemistry to identify and localize ligament specific proteins produced within the scaffolds. Cell culture results indicated that the M-GC hydrogel was an effective method of delivering viable cells evenly throughout the biomimetic scaffold. Compared to the unmodified PCLDLLA surfaces, the base-etched electrospun PCLDLLA fibre surfaces increased cell adhesion and acted as new tissue growth guides in the biomimetic scaffold. The biomimetic scaffolds produced and accumulated ligament specific proteins: collagens type I and III. The biomimetic scaffold design was determined to be a viable alternative to the current designs of ligament tissue engineering scaffolds. / Thesis (Master, Chemical Engineering) -- Queen's University, 2011-06-22 10:46:12.291
2

Strategies for the Fabrication of Cellularized Micro-Fiber/Hydrogel Composites for Ligament Tissue Engineering

Thayer, Patrick Scott 23 December 2015 (has links)
Partial or complete tears of the anterior cruciate ligament (ACL) can greatly afflict quality of life and often require surgical reconstruction with autograft or allograft tissue to restore native knee biomechanical function. However, limitations exist with these treatments that include donor site pain and weakness found with autografts, and longer "ligamentization" and integration times due to the devitalization of allograft tissue. Alternatively, a tissue engineering approach has been proposed for the fabrication of patient-specific grafts that can more rapidly and completely heal after ACL reconstruction. Electrospun micro-fiber networks have been widely utilized as biomaterial scaffolds to support the growth and differentiation of mesenchymal stem cells toward many tissue lineages including ligament. However, these micro-fiber networks do not possess suitable sizes and shapes for a ligament application and cannot support cell infiltration. The objective of this work was to develop techniques to 1) rapidly cellularize micro-fiber networks, 2) assemble micro-fiber networks into cylindrical composites, 3) provide cues to mesenchymal stem cells (MSCs) to guide their differentiation toward a ligament phenotype. The cellularization of micro-fiber networks was performed utilizing a co-electrospinning/electrospraying technique. Cells deposited within a cell culture medium solution remained where they were deposited and did not proliferate. The inclusion of space-filling hydrogel network such as collagen was necessary to reduce the density of the micro-fiber network to facilitate spreading. However, it became apparent that the incorporation of significant collagen phase was necessary for long-term MSC survival within the micro-fiber network. Next, two approaches were developed to fabricate large cylindrical, composites. The first approach utilized a co-electrospinning/electrospraying technique to generate micro-fiber/collagen composites that were subsequently rolled into cylinders. These cylindrical composites exhibited greater diameters and water weight percentages as collagen content increased. However, the high micro-fiber content of these composites was inhibitory to cell survival. In the second approach, thin layers (~5-10 fibers) of aligned electrospun PEUR fibers were encapsulated within a collagen gel and subsequently rolled the composites into cylinders. These sparse-fiber composites were nearly 98% by weight water and confocal imaging revealed the presence of sparse fiber layers (~5 fibers thick) separated by approximately 200 μm thick collagen layers. We hypothesize that the proliferation and migration of MSCs within these micro-fiber/collagen composites may not be restricted by the presence of a dense, non-manipulatable electrospun fiber network present in traditionally rolled fiber composites. Simple model platforms were then developed to study the influence of sparse micro-fibers on MSCs differentiation within a collagen hydrogel. MSCs in the presence of the softest (5.6 MPa) micro-fibers elongated and oriented to the underlying network and exhibited greater expression of scleraxis, and α-smooth muscle actin compared to the stiffest (31 MPa) fibers. Additionally, preliminary results revealed that the incorporation of fibroblast growth factor-2 and growth and differentiation factor-5 onto micro-fibers through chemical conjugation enhanced expression of the ligamentous markers collagen I, scleraxis, and tenomodulin. In conclusion, micro-fiber/collagen composite materials must possess sufficient space to support the infiltration and differentiation of MSCs. The strategies described in this document could be combined to fabricate large, micro-fiber/collagen composites that can support cell infiltration and provide relevant cues to guide the formation of an engineered ligament tissue. / Ph. D.
3

Mineralization Potential of Electrospun PDO-nHA-Fibrinogen Scaffolds Intended for Cleft Palate Repair

Rodriguez, Isaac 26 April 2010 (has links)
The overall goal of this study was to identify mineralized scaffolds which can serve as potential alternatives to bone graft substitutes intended for cleft palate repair. The aim of this preliminary study was to evaluate the role of fibrinogen (Fg) and nano-hydroxyapatite (nHA) in enhancing mineralization potential of polydioxanone (PDO) electrospun scaffolds. Scaffolds were fabricated by blending PDO:nHA:Fg in the following weight ratios: 100:0:0, 50:25:25, 50:50:0, 50:0:50, 0:0:100 and 0:50:50. Scaffolds were immersed in different simulated body fluids for 5 and 14 days to induce mineralization. The inclusion of fibrinogen induced sheet-like mineralization while individual fiber mineralization was noticed in its absence. Modified protocols of alizarin red staining and burn-out test were developed to quantify mineral content of scaffolds. After mineralization, 50:50:0 scaffolds were still porous and contained the most mineral. 50:25:25 scaffolds had the highest mineralization potential but lacked porosity. Therefore, it can be anticipated that these mineralized organic-inorganic electrospun scaffolds will induce bone formation.
4

Reduced Burst Release of Bioactive rhBMP-2 from a Three-phase Composite Scaffold

Grant, David William 31 December 2010 (has links)
Recombinant human bone morphogenic proteins (rhBMPs) are extensively studied and employed clinically for treatment of various bone defects. Current clinical delivery vehicles suffer wasteful burst releases that mandate supra-physiological dosing driving concerns over safety and cost. It was therefore investigated whether a unique drug delivery vehicle sequestered within a composite scaffold could lower the burst release of rhBMP-2. PLGA-calcium phosphate tri-phasic composite scaffolds delivered model protein BSA with burst release of ~13% and sustained kinetics of 0.5-1.5% BSA/day up to 45 days. rhBMP-2 was delivered with zero burst release however at much lower levels, totaling 0.09% to 0.9 % release over 10 days, but had up to 6.3-fold greater bioactivity than fresh rhBMP-2 (p<0.05). In conclusion, the three-phase composite scaffold can deliver bioactive proteins with a reduced burst release and sustained secondary kinetics.
5

Reduced Burst Release of Bioactive rhBMP-2 from a Three-phase Composite Scaffold

Grant, David William 31 December 2010 (has links)
Recombinant human bone morphogenic proteins (rhBMPs) are extensively studied and employed clinically for treatment of various bone defects. Current clinical delivery vehicles suffer wasteful burst releases that mandate supra-physiological dosing driving concerns over safety and cost. It was therefore investigated whether a unique drug delivery vehicle sequestered within a composite scaffold could lower the burst release of rhBMP-2. PLGA-calcium phosphate tri-phasic composite scaffolds delivered model protein BSA with burst release of ~13% and sustained kinetics of 0.5-1.5% BSA/day up to 45 days. rhBMP-2 was delivered with zero burst release however at much lower levels, totaling 0.09% to 0.9 % release over 10 days, but had up to 6.3-fold greater bioactivity than fresh rhBMP-2 (p<0.05). In conclusion, the three-phase composite scaffold can deliver bioactive proteins with a reduced burst release and sustained secondary kinetics.

Page generated in 0.0588 seconds