• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1503
  • 699
  • 622
  • 256
  • 39
  • 37
  • 33
  • 22
  • 20
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • Tagged with
  • 4134
  • 889
  • 585
  • 555
  • 489
  • 423
  • 376
  • 375
  • 359
  • 359
  • 326
  • 313
  • 295
  • 284
  • 265
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

The characterisation of the spatial distribution of reinforcement in powder metallurgy route Al/SiCp MMCs and its effect on their processing and properties

Stone, Ian C. January 1994 (has links)
No description available.
442

Diatomaceous earth filled HDPE

De Sousa, Jose A. January 1984 (has links)
The objective of this research programme was to study the influence of filler incorporation on the rheological, mechanical and morphological properties of high density polyethylene. Several compositions of general moulding grade of HDPE filled with increasing concentrations of diatomaceous earth, an amorphous silica-based particulate mineral of high porosity and friable nature, were compounded in a single-screw extruder. Good filler dispersion into the polymer matrix was achieved with complete polymer permeation through the porous structure of the diatomite particles, and with no apparent filler aggregates or voids being observed on fracture surfaces from SEM photomicrographs of the composites. The specific volume of the filled polymer was a simple linear additive function of the specific volumes of the individual components. DSC measurements carried out on the polyethylene in the composite, indicated very minor influence of the filler incorporation on the crystallinity content of polyethylene and, therefore, the diatomite filler was considered as non-active filler for the polyethylene matrix used.
443

Damage accumulation and degradation of composite laminates under aircraft service loading : assessment and prediction

Farrow, I. R. January 1989 (has links)
No description available.
444

Performance of jointed fibre-glass composites /

Juwono, Ariadne Lakshmidevi. Unknown Date (has links)
Thesis (M.Eng.)--University of South Australia, 1995.
445

Diffraction Investigations of Cement Clinker and Tricalcium Silicate using Rietveld Analysis

January 2003 (has links)
Cement is the world's most popular building material, yet surprisingly its composition is not fully understood. Due to the complex nature of cement constituents, there is currently no reliable method to quantitatively determine the composition of cement. Partly this arises from the fact that the crystal structure of the main component of cement, tricalcium silicate, has not been fully determined. There has been an increase in the use of Rietveld refinement of powder diffraction data for the analysis of cement in recent years. The method has emerged as a valuable tool for the quantitative determination of the composition of cement. A further advantage of the method is its ability to refine complex crystal structures, such as tricalcium silicate. Despite the increased application of this method, few publications exist concerning the evaluation or improvement of the method for the purpose of cement analysis. In this work, the Rietveld method has been critically investigated as a tool for the identification and quantification of the different phases in cement clinker. Laboratory X-ray, synchrotron, neutron, and combined diffraction data are all used in the investigations. For the first time, comparisons of analysis results using various sources are made, rather than comparing the results from various methods. Inconsistencies in the results were found, and their causes were investigated and identified. The reliability of this method was shown to be dependent on the quality of the diffraction data, both in terms of the counting statistics and the resolution, and on the ability of the structures used in the Rietveld model to describe the phases in the sample. The only previously existing structural model for triclinic tricalcium silicate is shown, in this work, inadequate as a description of the form found in cement. Consequently, the triclinic crystal structures of tricalcium silicate were re-investigated. Using synchrotron powder diffraction data, the lattice dynamics during the T1-T2 transition were observed in detail for the first time. Superstructure reflections were observed for the two structures. The first model for the average sub-structure of the T2 form is presented. Structural modulation in the T1 form was re-investigated. The parent sub-structure, suitable for Rietveld refinement, corresponding modulation wave-vector, and superspace group of the superstructure, were identified.
446

Polyurethane organosilicate nanocomposites for novel use as biomaterials

Styan, Katie, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Polymer organosilicate nanocomposites have attracted significant attention over the last decade due to improved mechanical, thermal, and barrier properties. Several nanocomposite researchers have recognised potential for biomedical applications, however none have conducted biological investigations. In this project, the predicted ability of the organosilicate to enhance biostability, modulate the release of included drugs, and confer biofunctionality and control over the host response, were assessed as the three primary hypotheses. The studies were conducted with the objective being employment as urinary device biomaterials. Of prime importance was that no detrimental change in cytocompatibility was resultant. Biomedical thermoplastic elastomeric polyurethane organosilicate nanocomposites were prepared from poly(ether)urethane of 1000g/mol poly(tetramethylene oxide) polyol, 4,4??? diphenylmethane diisocyanate, and 1,4 butanediol chain extender chemistry, and various organosilicates with loadings from 1w% to 15w%, using a solution casting technique. Initially, partially exfoliated nanocomposites were produced using a commercially available organosilicate, Cloisite?? 30B. These nanocomposites displayed several advantageous properties, namely i) significant anti-bacterial activity, reducing S. epidermidis adherence after 24h to ~20% for a 15w% organosilicate loading, ii) enhanced biostability, with a 15w% organosilicate loading displaying only slight degradation after a 6 week subcutaneous in vivo ovine implantation, and iii) static modulation of model drug release as a factor of drug properties and organosilicate loading. The former was attributed to the Cloisite?? 30B quaternary ammonium compound, while the latter two were likely primarily barrier effect related and due to changes to poly(ether)urethane permeability. Electrostatic and chemical interactivity between drug and organosilicate was also implicated in the observed drug release modulation. Unfortunately, a lack of in vitro cytocompatibility and poor in vivo inflammatory response will limit in vivo use. Utilising bioinert 1-aminoundecanoic acid as an alternative organic modification, cytocompatible intercalated nanocomposites were produced thus likely allowing in vivo nanocomposite use and exploitation of the barrier effect related properties. However, these nanocomposites were not antibacterial. Variation of the organic modification and/or use of co-modification were viable means of modulating host response and biofunctionality, however nanoscale dispersion of co-modified silicate was poor. Use of nanocomposite technology was concluded beneficial to existing biomaterials, and specifically to biomaterial application as urinary catheters / stents.
447

The investigation of novel polymer-photochromic conjugates

Such, Georgina, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
My research has focussed on the development of a technique to tailor photochromic switching rates by creating a customised local environment for the dye within an otherwise rigid host matrix. Living radical polymerisation offers the potential to design such a system. A living radical initiator based on a spirooxazine compound was used to polymerise a polymer chain of well controlled molecular weight and polydispersity. This technique facilitated the construction of a conjugate with every photochromic moiety convalently attached to a polymer chain with uniform characteristics. The photochromic behaviour of these new polymer-spirooxazine conjugates were investigated in a cross-linked polymer matrix with a Tg of approximately 120??C. It is well known that photochromic switching is susceptible to local environment effects such as rigidity, free volume and polarity.1, 2 The goal of these systems was to create a uniform local environment which would facilitate controlled changes in the photochromic switching rates. The photophysical investigation of these systems demonstrated the success of this technique. The photochromic rates were directly related to the characteristics of the polymer conjugate. It was postulated the conjugates acted as a customised local environment for the photochromic moiety, encapsulating it from the host matrix. Consequently systematic tailoring of the photochromic switching rates was achieved by changes in the characteristics of the attached polymer. To our knowledge this is the first technique to control local environment of a photochromic compound and thus the first example of systematic tuning of photochromic switching rates. Throughout this research, several characteristics of the attached polymer were modified to give a series of rules for the tuning of photochromic switching rates using this technique. The largest variation in switching speed is achieved through variation of Tg. A range of photochromic rates from extremely slow to near solution-like can be easily achieved. The necessary variations in Tg can be achieved easily using living radical polymerisation techniques. The use of different homopolymers, block and random copolymers were all demonstrated successfully in this work. For finer tuning of the photochromic rates, changes in chain length can be used. It was also found the best living radical polymerisation method for this work was ATRP due to the bulky or incompatible halogen which contributed to efficient encapsulation. However this endgroup effect is only important in systems which do not have a low Tg component. The incorporation of such a component overrides all other contributions to the overall behaviour.
448

Drag reduction in pipe flows with polymer additives /

Grabowski, Daniel W. January 1990 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1990. / Includes bibliographical references (leaf 80).
449

Adhesion and cure kinetics of photopolymers /

Li, Li. January 1999 (has links)
Thesis (Ph.D.)--Tufts University, 1999. / Submitted to the Dept. of Mechanical Engineering. Includes bibliographical references (leaves 110-113). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
450

Damage in MMCs and its role in microstructural design /

Lahaie, Denis. January 1998 (has links)
Thesis (Ph.D.) -- McMaster University, 1998. / Includes bibliographical references (leaves 236-240). Also available via World Wide Web.

Page generated in 0.0863 seconds