• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1503
  • 699
  • 622
  • 256
  • 39
  • 37
  • 33
  • 22
  • 20
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • Tagged with
  • 4134
  • 889
  • 585
  • 555
  • 489
  • 423
  • 376
  • 375
  • 359
  • 359
  • 326
  • 313
  • 295
  • 284
  • 265
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

The chemical vapor deposition of dispersed phase composites in the B-Si-C-H-Cl-Ar system

Moss, Thomas Strong, III 05 1900 (has links)
No description available.
432

Investigation of shock-induced and shock-assisted chemical reactions in Mo-Si powder mixtures

Vandersall, Kevin S. 12 1900 (has links)
No description available.
433

On-line consolidation mechanisms for thermoplastic composites

Carpenter, Charles E. 05 1900 (has links)
No description available.
434

Microstructural damage evolution during thermal cycling of a metal matrix composite

Whited, William Thomas 12 1900 (has links)
No description available.
435

A scattered light photoelastic analysis of interlaminar matrix stresses in fibrous composite models

Aderholdt, Robert Wendell 12 1900 (has links)
No description available.
436

Structure, property and processing relationships of all-cellulose composites

Duchemin, Benoît Jean-Charles January 2008 (has links)
Cellulose is the main load-bearing component in plant fibre due to its covalent β-1→4- link that bonds glucose molecules into a flat ribbon and tight network of intra- and intermolecular hydrogen bonds. It is possible to manipulate the intra- and intermolecular hydrogen bonds in order to embed highly crystalline cellulose in a matrix of non-crystalline cellulose, thereby creating self-reinforced cellulose composites. Cellulose is an excellent choice of raw material for the production of sustainable and high-strength composites by selfconsolidation of cellulose since it is readily biodegradable and widely available. Nowadays, the cellulose industry makes extensive use of solvents. A multitude of solvents for cellulose is available but only a few have been explored up to the semi-industrial scale and can qualify as "sustainable" processes. An effective solvent for cellulose is a mixture of the LiCl salt and organic solvent N,N-Dimethylacetamide (DMAc). Once cellulose has been dissolved, the cellulose/LiCl/DMAc mixture can be precipitated in water. Preliminary results showed that a solution of 1 wt.% kraft cellulose in 8 wt.% LiCl/DMAc that was precipitated in water formed an hydrogel where cellulose chains were held in their amorphous state and in which no crystalline phase was detected by wide angle X-ray diffraction (WAXD). The initially amorphous cellulose started crystallizing by cross-linking of hydrogen bonds between the hydroxyl groups of the cellulose chains when the cellulose gel was dried and the water to cellulose ratio reached 7 g/g. The final form was poorly crystalline but distinct from amorphous cellulose. In order to study all-cellulose composites at a fundamental level, model all-cellulose composite films were prepared by partly dissolving microcrystalline cellulose (MCC) powder in an 8% LiCl/DMAc solution. Cellulose solutions were precipitated and the resulting gels were dried by vacuum-bagging to produce films approximately 0.2-0.3 mm thick. Wide-angle X-ray scattering (WAXS) and solid-state ¹³C NMR spectra were used to characterize molecular packing. The MCC was transformed to relatively slender crystallites of cellulose I in a matrix of paracrystalline and amorphous cellulose. Paracrystalline cellulose was distinguished from amorphous cellulose by a displaced and relatively narrow WAXS peak, by a 4 ppm displacement of the C-4 ¹³C NMR peak, and by values of T₂(H) closer to those for crystalline cellulose than disordered cellulose. Cellulose II was not formed in any of the composites studied. The ratio of cellulose to solvent was varied, with greatest transformation observed for c < 15%, where c is the weight of cellulose expressed as percentage of the total weight of cellulose, LiCl and DMAc. The dissolution time was varied between 1 and 48 h, with only slight changes occuring beyond 4 h. Transmission electron microscopy (TEM) was employed to assess the morphology of the composites. During dissolution, MCC in the form of fibrous fragments were split into thinner cellulose fibrils. The composites were tested in tension and fracture surfaces were inspected by scanning electron microscopy (SEM). It was found that the mechanical properties and final morphology of all-cellulose composites is primarily controlled by the rate of precipitation, initial cellulose concentration and dissolution time. All-cellulose composites were produced with a tensile strength of up to 106 MPa, modulus up to 7.6 GPa and strain-to-failure around 6%. The precipitation conditions were found to play a large role in the optimisation of the mechanical properties by limiting the amount of defects induced by differential shrinkage. Dynamic mechanical analysis was used to study the viscoelasticity of all-cellulose composites over temperatures ranging from -150℃ to 370℃. A β relaxation was found between -72 and -45℃ and was characterized by an activation energy of ~77.5±9.9 kJ/mol, which is consistent with the relaxation of the main chain through co-operative inter- and intramolecular motion. The damping at the β peak generally decreases with an increase in the crystallinity due to enhanced restriction of the molecular motion. For c≤15%, the crystallinity index and damping generally decreased with an increasing dissolution time, whereas the size distribution of the mobile entities increases. A simple model of crystallinity-controlled relaxation does not explain this phenomenon. It is proposed that the enhanced swelling of the cellulose in solution after higher dissolution times provides a more uniform distribution of the crystallites within the matrix resulting in enhanced molecular constriction of the matrix material. For c = 20%, however, the trend was the opposite when the dissolution time was increased. In this case, a slight increase in crystallinity and an increasing damping were observed along with a decrease in the size distribution of the mobile entities. This phenomenon corresponds to a re-crystallisation accompanied with a poor consolidation of the composite. A relaxation ɑ₂ at ~200℃ is attributed to the micro-Brownian motion of cellulose chains and is believed to be the most important glass transition for cellulose. The temperature of ɑ₂ decreased with an increase in crystallinity supposedly due to enhanced restriction of the mobile molecular phase. A high temperature relaxation which exhibited two distinct peaks, ɑ₁﹐₂ at ~300℃ and ɑ₁﹐₁ at ~320℃, were observed. ɑ₁﹐₂ is prevalent in the cellulose with a low crystallinity. A DMA scan performed at a slow heating rate enabled the determination of the activation energy for this peak as being negative. Consequently, ɑ₁﹐₂ was attributed to the thermal degradation onset of the surface exposed cellulose chains. ɑ₁﹐₁ was prevalent in higher crystallinity cellulose and accordingly corresponds to the relaxation of the crystalline chains once the amorphous portion starts degrading, probably due to slippage between crystallites. The relative ɑ₁﹐₁/ɑ₁﹐₂ peak intensity ratio was highly correlated to the amount of exposed chains on the surface of the cellulose crystallites. Novel aerogels (or aerocellulose) based on all-cellulose composites were also prepared by partially dissolving microcrystalline cellulose (MCC) in an 8 wt.% LiCl/DMAc solution. Cellulose gels were precipitated and then processed by freeze-drying to maintain the openness of the structure. The density of aerocellulose increased with the initial cellulose concentration and ranged from 116 to 350 kg.m⁻³. Aerocellulose with relatively high mechanical properties were successfully produced. The flexural strength and modulus of the aerocellulose was measured up to 8.1 MPa and 280 MPa, respectively.
437

Structure-property characterisation of ternary phase polypropylene composites

Premphet, Kalyanee January 1995 (has links)
An investigation to study factors controlling the structure and properties of binary- and ternary-phase polypropylene (PP) composites containing ethylene-propylene rubber (EPR) and glass beads has been carried out. The composite structure was evaluated using various techniques including SEM, DSC, XRD and DMA. While the mechanical tests included tensile and impact measurements at ambient temperature, and a fracture toughness test based on the J-integral method carried out at -20 oC. EPR and glass beads were found to influence the structure and properties of polypropylene in different ways. Incorporation of EPR into polypropylene results in an improvement in impact strength and toughness, accompanied by a decrease in tensile strength and modulus. The opposite was found for composites containing glass beads. Polypropylene composites with balanced mechanical properties were achieved by physical blending of this polymer with both EPR and glass beads. The effect of composite structure, composition and processing variables on the properties of the ternary systems were analysed. A study of their morphology has shown that two kinds of phase structure can be formed, either a separate dispersion of the phases, or encapsulation of the filler by rubber. Factors controlling these structures are believed to be due mainly to the surface characteristics of the components. Modification of EPR by maleic-anhydride grafting results in composites with rubber encapsulation of the filler, with FTIR revealing a reaction between these phases. Composites containing unmodified EPR, on the other hand, show separate dispersion of the components. The former composites, with good adhesion at the rubber and filler interface, have noticeably higher impact strength and fracture toughness at and below ambient temperatures, while the latter variant is characterised by higher tensile strength and modulus, accompanied by a lower impact strength. Improvements in impact strength of the composites was also achieved by promoting adhesion between the polymer and filler interface using surfacecoated glass beads, or by increasing the number of rubber particles adhering to the glass bead surfaces using a two-step mixing technique. Results of the present study have thus shown that mechanical properties of ternary phase polypropylene composites can be adjusted, to a certain extent, by controlling their morphologies through the use of suitable functionalised materials and also by using an appropriate compounding methodology.
438

A study of magnesium and magnesium alloy composites containing alumina and silicon carbide-based fibres

Hicks, Kevin Paul January 1993 (has links)
No description available.
439

Corrosion behaviour of metal matrix composite

Otani, T. January 1988 (has links)
No description available.
440

Permeability degradation and wear of dental composites

Mair, Lawrence January 1989 (has links)
No description available.

Page generated in 0.0416 seconds