791 |
Preparo e caracterização físico-química e biológica de um biocompósito à base de celulose associada à própolis / Preparation and physicochemical and biological characterization of a based cellulose biocomposite associated with propolisJuliano Bottura Picchi 21 December 2010 (has links)
O desenvolvimento de novos materiais com fonte renovável, baixo custo, melhores propriedades físico-mecânicas e biodegradáveis tem se tornado o principal objetivo de muitas empresas e grupos de pesquisa. O objetivo deste trabalho foi preparar e caracterizar física, química e biologicamente um biocompósito à base de membrana de celulose com própolis. Foram preparadas membranas de celulose com própolis nas concentrações de 1,2%, 2,4% e 3,6%, secas e úmidas, realizados testes de caracterização através de Espectroscopia Vibracional na Região Infra-Vermelho, Difratometria de Raios-X, Microscopia Eletrônica de Varredura, Análise Térmica [Calorimetria Exploratória Diferencial e Termogravimetria] e análise microbiológica para S. aureus. A presença de concentrações diferentes de própolis nas membranas foi identificada nos diversos métodos utilizados e através do ensaio antimicrobiano, a concentração mínima de 0,34% de própolis foi ativo à S. aureus. Portanto, os resultados obtidos são promissores para trabalhos futuros in vivo e possíveis aplicações médicas. / The development of new materials with renewable, low cost, better physical and mechanical properties and biodegradable has become the main goal of many companies and research groups. The aim of this work was prepare and characterize physical, chemical and biologically biocomposites based at a cellulose membrane with propolis. Cellulose membranes were prepared with propolis at concentrations of 1.2%, 2.4% and 3.6%, wet and dry tests performed characterization using vibrational spectroscopy Infra-Red, X-ray Diffraction, Microscopy Scanning Electron, thermal analysis [differential scanning calorimetry and thermogravimetric] and microbiological analysis for S. aureus. The presence of different concentrations of propolis in the membranes was identified in various methods used by testing and antimicrobial, the minimum concentration of 0.34% propolis was active at St. aureus. Therefore, the results are promising for future studies in vivo and potential medical applications.
|
792 |
Adhesive Joint Analyses Using Ansys CZM Modeling of a Prefabricated Hybrid Concrete-GFRP-CFRP UnitUnknown Date (has links)
The present study reviews applications of FRP materials joined by structural adhesives in civil engineering. FE analysis with mix-mode cohesive zone material model (CZM) was used to analyze stresses induced in two structural adhesives joining dissimilar materials (concrete GFRP-CFRP) of the hybrid-composite unit. The predicted failure loads, displacements and deformation by the 3-D non-linear FE analysis in the present study are in good agreement with the experimental results of the hybrid-composite unit reported by Deskovic et al. (1995). The contact analysis revealed a complex 3-D state of stress in the bondlines of both structural adhesives. It is concluded that higher joint strength is expected when a ductile adhesive is used. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
|
793 |
Thermomechanical response of metal-ceramic graded composites for high-temperature aerospace applicationsDeierling, Phillip Eugene 01 December 2016 (has links)
Airframes operating in the hypersonic regime are subjected to complex structural and thermal loads. Structural loads are a result of aggressive high G maneuvers, rapid vehicle acceleration and deceleration, and dynamic pressure, while thermal loads are a result of aerodynamic heating. For such airframes, structural members are typically constructed from steel, titanium and nickel alloys. However, with most materials, rapid elevations in temperature lead to undesirable changes in material properties. In particular, reductions in strength and stiffness are observed, along with an increase in thermal conductivity, specific heat and thermal expansion. Thus, hypersonic airframes are typically designed with external insulation, active cooling or a thermal protection system (TPS) added to the structure to protect the underling material from the effects of temperature. Such thermal protection may consist of adhesively bonded, pinned, and bolted thermal protection layers over exterior panels. These types of attachments create abrupt changes in thermal expansion and stiffness that make the structure susceptible to cracking and debonding as well as adding mass to the airframe.
One of the promising materials concepts for extreme environments that was introduced in the past is the so-called Spatially Tailored Advanced Thermal Structures (STATS). The concept of STATS is rooted in functionally graded materials (FGMs), in which a directional variation of material properties exists. These materials are essentially composites and consist of two or more phases of distinct materials in which the volume fractions of each phase continuously change in space. Here, the graded material will serve a dual-purpose role as both the structural/skin member and thermal management with the goal of reducing the weight of the structure while maintaining structural soundness. This is achieved through the ability to tailor material properties to create a desired or enhanced thermomechanical response through spatial variation (e.g. grading).
The objective of this study is to present a computational framework for modeling and evaluating the thermomechanical response of STATS and FGMs for highly maneuverable hypersonic (Mach > 5) airframes. To meet the objective of this study, four key steps have been defined to study the thermomechanical response of such materials in extreme environments. They involve: (1) modeling of graded microstructures; (2) validation of analytical and numerical modeling techniques for graded microstructures; (3) determination of effective properties of variable composition composites; (4) parametric studies to evaluate the performance of FGMs for use in the hypersonic operating environment; (5) optimization of the material spatial grading in hypersonic panels aiming to improve the thermomechanical performance.
Modeling of graded microstructures, representing particulate reinforced FGMs, has been accomplished using power law distribution functions to specify the spatial variation of the constituents. Artificial microstructures consisting of disks and spheres have been generated using developed algorithms. These algorithms allow for the creation of dense packing fractions up to 0.61 and 0.91 for 2D and 3D geometry, respectively.
Effective properties of FGMs are obtained using micromechanics models and finite element analysis of representative volume elements (RVEs). Two approaches have been adopted and compared to determine the proper RVE for materials with graded microstructures. In the first approach, RVEs are generated by considering regions that have a uniform to slow variation in material composition (i.e., constant volume fraction), resulting in statistically homogenous piecewise RVEs of the graded microstructure neglecting interactions from neighboring cells. In the second approach, continuous RVEs are generated by considering the entire FGM. Here it is presumed that modeling of the complete variation in a microstructure may influence the surrounding layers due to the interactions of varying material composition, particularly when there is a steep variation in material composition along the grading direction. To determine these effects of interlayer interactions, FGM microstructures were generated using three different types of material grading functions, linear, quadratic and square root, providing uniform, gradual and steep variations, respectively. Two- and three-dimensional finite element analysis was performed to determine the effective temperature-dependent material properties of the composite over a wide temperature range. The outcome of the computational analysis show that the similar effective properties are obtained by each of the modeling approaches. Furthermore, the obtained computational results for effective elastic, thermal, and thermal expansion properties are consistent with the known analytical bounds.
Resulting effective temperature-dependent material properties were used to evaluate the time-dependent thermostructural response and effectiveness of FGM structural panels. Structural panels are subjected to time- and spatial-dependent thermal and mechanical loads resulting from hypersonic flight over a representative trajectory. Mechanical loads are the by-product of aggressive maneuvering at high air speeds and angles of attack. Thermal loads as a result of aerodynamic heating are applied to the material systems as laminar, turbulent and transitional heat flux on the outer surface. Laminar and turbulent uniform heat fluxes are used to evaluate the effectiveness of FGM panels graded in the through-thickness direction only. Transitional heat fluxes are used to evaluate the effectiveness of FGMs graded in two principal directions, e.g., through-thickness and the surface parallel to flow. The computational results indicate that when subjected to uniform surface heat flux, the graded material system can eliminate through-thickness temperature gradients that are otherwise present in traditional thermal protection systems. Furthermore, two-dimensional graded material systems can also eliminate through-thickness temperature gradients and significantly reduce in-plane surface temperature gradients when subjected to non-uniform surface aerodynamic heating.
|
794 |
Micromechanics-Enriched Finite Element Modeling of Composites With Manufacturing or Service-Induced DefectsHyde, Alden S. 01 May 2019 (has links)
Composite materials are increasingly used in many industries due to the high strength and low weight properties that they exhibit. Since composites are becoming more popular, they are being used in applications such as aircraft, boats, wind turbine blades, and even sports equipment. Composite behavior is complicated since they are made up of two completely different materials such as strong thin fibers and a relatively weaker resin material that hold the fibers together. It is becoming more important to understand how composites behave in different situations so that equipment designers have reliable material information in order to design safe products that will not harm human life. Fabrication of composite material is not perfect and introduces defects such as the fibers being wavy and the matrix having voids. These defects decrease the strength of composites and if not accounted for in design, could be detrimental. To better understand the effects of these defects in composite materials, experimental tests can be performed to determine the material properties but it costs a lot of money and time. If the material properties of the composite do not match what is desired, different constituent materials are selected to create new composite specimens and the tests must be repeated which costs more time and more money. Computational approaches such as Finite Element Modeling (FEM) are gaining popularity as a way to predict composite behavior without the high cost of fabrication and equipment. Another advantage is the ability to test various materials and various defects by simply changing parameters in the computation. For this thesis, an FEM protocol is developed to model composites made from the material AS4/8552. First, the strength properties are extracted from a model without defects and then, defects such as waviness in the fiber and voids in the matrix are added to the model to see its effect. Knowing the effect of certain defects may help motivate composite fabricators to develop processes that eliminate detrimental defects.
|
795 |
The mechanical properties of short fibre composites.Checkland, John. January 1971 (has links)
No description available.
|
796 |
High performance epoxy-layered silicate nanocompositesBecker, Lars-Ole, 1973- January 2003 (has links)
Abstract not available
|
797 |
High performance epoxy-layered silicate nanocompositesBecker, Lars-Ole,1973- January 2003 (has links)
For thesis abstract select View Thesis Title, Contents and Abstract
|
798 |
The Improvement of Interfacial Bonding, Weathering and Recycling of Wood Fibre Reinforced Polypropylene CompositesBeg, Mohammad Dalour Hossen January 2007 (has links)
This study deals with medium density wood fibre (MDF) and Kraft fibre reinforced polypropylene (PP) composites produced using extrusion followed by injection moulding. Initially, composites were produced with MDF fibre using 10, 20, 30, 40, 50 and 60 wt% fibre, and 1, 2, 3 and 4 wt% maleated polypropylene (MAPP) as a coupling agent. A fibre content of 50 wt% with 3 wt% MAPP was found to be optimum. Alkali treatment of fibre was carried out to improve the interfacial bonding. After treatment, fibre surface charge was found to increase, but single fibre tensile strength (TS) and Young's modulus were (YM) decreased. Alkali treatment reduced composite TS but increased YM. The effects of hemicellulose and residual lignin content were assessed with Kraft fibre (subjected to different stages of a standard Kraft pulping process and therefore consisting of different hemicellulose and residual lignin contents). Fibre surface charge was found to increase with decreasing residual lignin content. Composites containing higher amounts of lignin lead to lower TS and lower thermal stability. Composites were subjected to accelerated weathering for 1000 hours. TS and YM were found to decrease during weathering, and the extent of reduction was found to be higher for composites with higher residual lignin. The reduction of mechanical properties was found to be due to degradation of lignin and PP chain scission as evaluated by increase in PP crystallinity after weathering. As low lignin (bleached) Kraft fibre composites were found to provide superior mechanical properties, as well as more stable during accelerated weathering, further study including optimisation of MAPP content, effects of fibre contents, fibre length, fibre beating, hygrothermal ageing and recycling were carried out with bleached Kraft fibre. MAPP contents of 1, 2, 3, 4, 5, 7 and 10 wt% were used in Kraft fibre reinforced PP composites, and 3-5 wt% was found to be most favourable. Composite fibre content was varied between 30-50 wt%, and 40 wt% found to provide the maximum TS. To investigate the effects of fibre length on composites, fibre fractions of different length distribution were separated using a pressure screen. TS, YM and impact strength were found to decrease and failure strain (FS) increased with decreasing fibre length. To improve the interfacial bonding, the fibre was treated by mechanical beater. Fibre beating increased the TS of composites up to a certain point, beyond which TS decreased. Hygothermal ageing of composites was carried out by immersing specimens in distilled water at 30, 50 and 70 C over an 8-month period. Equilibrium moisture content and diffusion coefficient increased with increased fibre content in composites as well as with increased immersion temperature. Composites without coupling agent showed higher water uptake and diffusion coefficient than that of with coupling agent. After hygrothermal ageing the TS and YM decreased but FS and impact strength were found to increase. An investigation into the effects of recycling was carried out with composites containing either 40 wt% or 50 wt% fibre (bleached Kraft) with 4 wt% MAPP, and recycled up to eight times. For composites with 40 wt% fibre, TS and YM were found to decrease with increased recycling by up to 25% for TS and 17% for YM (after being recycled 8 times). Although TS was lower for virgin composites with 50 wt% fibre than for those with 40 wt% fibre, this initially increased with recycling by up to 14% (after being recycled 2 times), which was considered to be due to improved fibre dispersion, but then decreased with further recycling, and an overall 11% reduction of TS was found after recycling 8 times compared to the virgin composites. YM was higher for virgin composites with 50 wt% fibre than those with for 40 wt% fibre, and also initially increased with recycling but decreased upon further recycling. Recycling was found to increase thermal stability. The TS of composites made by combining recycled with virgin materials was also assessed. Hygrothermal ageing behaviour of recycled composites was also investigated by immersing specimens in distilled water at 50 C over a 9 month period. It was found that the diffusion coefficient and the equilibrium moisture contents of composites decreased with increased number of times the materials were recycled. After hygrothermal ageing, TS and YM of composites were found to decrease. However, the extent of reduction was found to decrease with increased recycling.
|
799 |
Composite Reinforcement for Naval Ships: Concept Design, Analysis and DemonstrationGrabovac, Ivan, ivan.grabovac@dsto.defence.gov.au January 2006 (has links)
This thesis outlines the development of composite reinforcement technology for a ship's aluminium alloy superstructure. The work objective aimed to alleviate stress concentration in parts of the superstructure prone to fatigue-induced cracking. This is a novel approach to ship repair, which promises reduction in the cost of maintenance primarily due to greater efficiency and lower cost of repair. The work was conducted over approximately 12 years. It commenced in the late 80s with laboratory research and development and concluded in 2000 after completion of a seven-year trial on board a navy ship. Two carbon fibre composites, (5 m x 1 m consisting of a 25-ply laminate), were adhesively bonded to the 02-deck on the port and starboard sides. It was found that upgrading the structure using composites was effective, making it able to withstand service fatigue stresses. Finite element modelling and strain measurements on board the ship showed that critical stress concentration could be alleviated through stress redistribution. For the duration of the trial, no cracking of aluminium alloy deck in the vicinity of the reinforcements was reported. Both composite reinforcements exhibited good performance and remained in service after the end of the trial. However, the marine environment did cause some non-structural, edge debonding of the glass fibre reinforced overlay at the composite-metal interface. This overlay was designed to provide surface protection to the underlaying carbon reinforcement. Bond degradation was patchy. It occurred after about three years in service, most probably due to a combination of thermal cycling (solar heating/cooling) and water ingress at the interface. A new edge sealing method restored its durability and it required no further attention. This experiment was successfully demonstrated on board an active navy ship. The work proved that an effective and durable repair of a ship structure using non-metallic repair technology is feasible. Composite reinforcements prevented deck cracking and removed any need for welded repairs, thereby reducing the cost of ship maintenance. For further cost reduction it is recommended to adopt the principle of reverse engineering to simplify the technology for dockyard use.
|
800 |
Experimental Investigation of the Tensile Properties and Failure Mechanisms of Three-Dimensional Woven CompositesRudov-Clark, Shoshanna Danielle, srudov-clark@phmtechnology.com January 2007 (has links)
This PhD thesis presents an experimental investigation into the tensile properties, strengthening mechanics and failure mechanisms of three-dimensional (3D) woven composites with through-the-thickness (z-binder) reinforcement. 3D composites are being developed for the aerospace industry for structural applications in next-generation aircraft, such as wing panels, joints and stiffened components. The use of 3D woven composites in primary aircraft structures cannot occur until there has been a detailed assessment of their mechanical performance, including under tensile loading conditions. The aim of this PhD project is to provide new insights into the in-plane tensile properties, fatigue life, tensile delamination resistance and failure mechanisms of 3D woven composites with different amounts of z-binder reinforcement. Previous research has revealed that excessive amounts of z-binder reinforcement dramatically improves the tensile delamination toughness, but at the expense of the in-plane structural properties. For this reason, this PhD project aims to evaluate the tensile performance of 3D woven composites with relatively small z-binder contents (less than ~1%). The research aims to provide a better understanding of the manufacture, microstructure and tensile properties of 3D woven composites to assist the process of certification and application of these materials to aircraft structures as well as high performance marine and civil structures.
|
Page generated in 0.0503 seconds