Spelling suggestions: "subject:"compositional complex allow""
1 |
The Phase composition and microstructure of AlχCoCrFeNiTi alloys for the development of high-entropy alloy systemsLindner, Thomas, Löbel, Martin, Mehner, Thomas, Dietrich, Dagmar, Lampke, Thomas 26 June 2017 (has links) (PDF)
Alloying aluminum offers the possibility of creating low-density high-entropy alloys (HEAs). Several studies that focus on the system AlCoCrFeNiTi differ in their phase determination. The effect of aluminum on the phase composition and microstructure of the compositionally complex alloy (CCA) system AlxCoCrFeNiTi was studied with variation in aluminum content (molar ratios x = 0.2, 0.8, and 1.5). The chemical composition and elemental segregation was measured for the different domains in the microstructure. The crystal structure was determined using X-ray diffraction (XRD) analysis. To identify the spatial distribution of the phases found with XRD, phase mapping with associated orientation distribution was performed using electron backscatter diffraction. This made it possible to correlate the chemical and structural conditions of the phases. The phase formation strongly depends on the aluminum content. Two different body-centered cubic (bcc) phases were found. Texture analysis proved the presence of a face-centered cubic (fcc) phase for all aluminum amounts. The hard η-(Ni, Co)3Ti phase in the x = 0.2 alloy was detected via metallographic investigation and confirmed via electron backscatter diffraction. Additionally, a centered cluster (cc) with the A12 structure type was detected in the x = 0.2 and 0.8 alloys. The correlation of structural and chemical properties as well as microstructure formation contribute to a better understanding of the alloying effects concerning the aluminum content in CCAs. Especially in the context of current developments in lightweight high-entropy alloys (HEAs), the presented results provide an approach to the development of new alloy systems.
|
2 |
Influence of Titanium on Microstructure, Phase Formation and Wear Behaviour of AlCoCrFeNiTix High-Entropy AlloyLöbel, Martin, Lindner, Thomas, Mehner, Thomas, Lampke, Thomas 18 July 2018 (has links)
The novel alloying concept of high-entropy alloys (HEAs) has been the focus of many recent investigations revealing an interesting combination of properties. Alloying with aluminium and titanium showed strong influence on microstructure and phase composition. However, detailed investigations on the influence of titanium are lacking. In this study, the influence of titanium in the alloy system AlCoCrFeNiTix was studied in a wide range (molar ratios x = 0.0; 0.2; 0.5; 0.8; 1.0; 1.5). Detailed studies investigating the microstructure, chemical composition, phase composition, solidification behaviour, and wear behaviour were carried out. Alloying with titanium showed strong influence on the resulting microstructure and lead to an increase of microstructural heterogeneity. Phase analyses revealed the formation of one body-centred cubic (bcc) phase for the alloy without titanium, whereas alloying with titanium caused the formation of two different bcc phases as main phases. Additional phases were detected for alloys with increased titanium content. For x ≥ 0.5, a minor phase with face-centred cubic (fcc) structure was formed. Further addition of titanium led to the formation of complex phases. Investigation of wear behaviour revealed a superior wear resistance of the alloy AlCoCrFeNiTi0.5 as compared to a bearing steel sample.
|
3 |
Enhanced Wear Behaviour of Spark Plasma Sintered AlCoCrFeNiTi High-Entropy Alloy CompositesLöbel, Martin, Lindner, Thomas, Lampke, Thomas 12 December 2018 (has links)
High hardness and good wear resistance have been revealed for the high-entropy alloy (HEA) system AlCoCrFeNiTi, confirming the potential for surface protection applications. Detailed studies to investigate the microstructure and phase formation have been carried out using different production routes. Powder metallurgical technologies allow for much higher flexibility in the customisation of materials compared to casting processes. Particularly, spark plasma sintering (SPS) enables the fast processing of the feedstock, the suppression of grain coarsening and the production of samples with a low porosity. Furthermore, solid lubricants can be incorporated for the improvement of wear resistance and the reduction of the coefficient of friction (COF). This study focuses on the production of AlCoCrFeNiTi composites comprising solid lubricants. Bulk materials with a MoS2 content of up to 15 wt % were produced. The wear resistance and COF were investigated in detail under sliding wear conditions in ball-on-disk tests at room temperature and elevated temperature. At least 10 wt % of MoS2 was required to improve the wear behaviour in both test conditions. Furthermore, the effects of the production route and the content of solid lubricant on microstructure formation and phase composition were investigated. Two major body-centred cubic (bcc) phases were detected in accordance with the feedstock. The formation of additional phases indicated the decomposition of MoS2.
|
4 |
Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOFLöbel, Martin, Lindner, Thomas, Mehner, Thomas, Lampke, Thomas 30 October 2017 (has links) (PDF)
The investigation of high-entropy alloys (HEAs) has revealed many promising properties. HEAs with a high share of Al and Ti are suitable for the formation of lightweight materials. Investigations of the alloy system AlCoCrFeNiTi showed high strength, hardness, ductility, and wear resistance, which makes this special alloy interesting for surface engineering and particularly for thermal spray technology. In this study, the suitability of inert gas-atomised HEA powder for high-velocity-oxygen-fuel (HVOF) thermal spray is investigated. This process allows for high particle velocities and comparatively low process temperatures, resulting in dense coatings with a low oxidation. The microstructure and phase composition of the atomised powder and the HVOF coating were investigated, as well as the wear behaviour under various conditions. A multiphase microstructure was revealed for the powder and coating, whereas a chemically ordered bcc phase occurred as the main phase. The thermal spray process resulted in a slightly changed lattice parameter of the main phase and an additional phase. In comparison with a hard chrome-plated sample, an increase in wear resistance was achieved. Furthermore, no brittle behaviour occurred under abrasive load in the scratch test. The investigation of wear tracks showed only minor cracking and spallation under maximum load.
|
5 |
The Phase composition and microstructure of AlχCoCrFeNiTi alloys for the development of high-entropy alloy systemsLindner, Thomas, Löbel, Martin, Mehner, Thomas, Dietrich, Dagmar, Lampke, Thomas 26 June 2017 (has links)
Alloying aluminum offers the possibility of creating low-density high-entropy alloys (HEAs). Several studies that focus on the system AlCoCrFeNiTi differ in their phase determination. The effect of aluminum on the phase composition and microstructure of the compositionally complex alloy (CCA) system AlxCoCrFeNiTi was studied with variation in aluminum content (molar ratios x = 0.2, 0.8, and 1.5). The chemical composition and elemental segregation was measured for the different domains in the microstructure. The crystal structure was determined using X-ray diffraction (XRD) analysis. To identify the spatial distribution of the phases found with XRD, phase mapping with associated orientation distribution was performed using electron backscatter diffraction. This made it possible to correlate the chemical and structural conditions of the phases. The phase formation strongly depends on the aluminum content. Two different body-centered cubic (bcc) phases were found. Texture analysis proved the presence of a face-centered cubic (fcc) phase for all aluminum amounts. The hard η-(Ni, Co)3Ti phase in the x = 0.2 alloy was detected via metallographic investigation and confirmed via electron backscatter diffraction. Additionally, a centered cluster (cc) with the A12 structure type was detected in the x = 0.2 and 0.8 alloys. The correlation of structural and chemical properties as well as microstructure formation contribute to a better understanding of the alloying effects concerning the aluminum content in CCAs. Especially in the context of current developments in lightweight high-entropy alloys (HEAs), the presented results provide an approach to the development of new alloy systems.
|
6 |
Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOFLöbel, Martin, Lindner, Thomas, Mehner, Thomas, Lampke, Thomas January 2017 (has links)
The investigation of high-entropy alloys (HEAs) has revealed many promising properties. HEAs with a high share of Al and Ti are suitable for the formation of lightweight materials. Investigations of the alloy system AlCoCrFeNiTi showed high strength, hardness, ductility, and wear resistance, which makes this special alloy interesting for surface engineering and particularly for thermal spray technology. In this study, the suitability of inert gas-atomised HEA powder for high-velocity-oxygen-fuel (HVOF) thermal spray is investigated. This process allows for high particle velocities and comparatively low process temperatures, resulting in dense coatings with a low oxidation. The microstructure and phase composition of the atomised powder and the HVOF coating were investigated, as well as the wear behaviour under various conditions. A multiphase microstructure was revealed for the powder and coating, whereas a chemically ordered bcc phase occurred as the main phase. The thermal spray process resulted in a slightly changed lattice parameter of the main phase and an additional phase. In comparison with a hard chrome-plated sample, an increase in wear resistance was achieved. Furthermore, no brittle behaviour occurred under abrasive load in the scratch test. The investigation of wear tracks showed only minor cracking and spallation under maximum load.
|
7 |
High-Temperature Wear Behaviour of Spark Plasma Sintered AlCoCrFeNiTi0.5 High-Entropy AlloyLöbel, Martin, Lindner, Thomas, Pippig, Robert, Lampke, Thomas 02 July 2019 (has links)
In this study, the wear behaviour of a powder metallurgically produced AlCoCrFeNiTi0.5 high-entropy alloy (HEAs) is investigated at elevated temperatures. Spark plasma sintering (SPS) of inert gas atomised feedstock enables the production of dense bulk material. The microstructure evolution and phase formation are analysed. The high cooling rate in the atomisation process results in spherical powder with a microstructure comprising two finely distributed body-centred cubic phases. An additional phase with a complex crystal structure precipitates during SPS processing, while no coarsening of microstructural features occurs. The wear resistance under reciprocating wear conditions increases at elevated temperatures due to the formation of a protective oxide layer under atmospherical conditions. Additionally, the coefficient of friction (COF) slightly decreases with increasing temperature. SPS processing is suitable for the production of HEA bulk material. An increase in the wear resistance at elevated temperature enables high temperature applications of the HEA system AlCoCrFeNiTi0.5.
|
Page generated in 0.1064 seconds