Spelling suggestions: "subject:"phasenzusammensetzung"" "subject:"basenzusammensetzung""
1 |
Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOFLöbel, Martin, Lindner, Thomas, Mehner, Thomas, Lampke, Thomas 30 October 2017 (has links) (PDF)
The investigation of high-entropy alloys (HEAs) has revealed many promising properties. HEAs with a high share of Al and Ti are suitable for the formation of lightweight materials. Investigations of the alloy system AlCoCrFeNiTi showed high strength, hardness, ductility, and wear resistance, which makes this special alloy interesting for surface engineering and particularly for thermal spray technology. In this study, the suitability of inert gas-atomised HEA powder for high-velocity-oxygen-fuel (HVOF) thermal spray is investigated. This process allows for high particle velocities and comparatively low process temperatures, resulting in dense coatings with a low oxidation. The microstructure and phase composition of the atomised powder and the HVOF coating were investigated, as well as the wear behaviour under various conditions. A multiphase microstructure was revealed for the powder and coating, whereas a chemically ordered bcc phase occurred as the main phase. The thermal spray process resulted in a slightly changed lattice parameter of the main phase and an additional phase. In comparison with a hard chrome-plated sample, an increase in wear resistance was achieved. Furthermore, no brittle behaviour occurred under abrasive load in the scratch test. The investigation of wear tracks showed only minor cracking and spallation under maximum load.
|
2 |
Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOFLöbel, Martin, Lindner, Thomas, Mehner, Thomas, Lampke, Thomas January 2017 (has links)
The investigation of high-entropy alloys (HEAs) has revealed many promising properties. HEAs with a high share of Al and Ti are suitable for the formation of lightweight materials. Investigations of the alloy system AlCoCrFeNiTi showed high strength, hardness, ductility, and wear resistance, which makes this special alloy interesting for surface engineering and particularly for thermal spray technology. In this study, the suitability of inert gas-atomised HEA powder for high-velocity-oxygen-fuel (HVOF) thermal spray is investigated. This process allows for high particle velocities and comparatively low process temperatures, resulting in dense coatings with a low oxidation. The microstructure and phase composition of the atomised powder and the HVOF coating were investigated, as well as the wear behaviour under various conditions. A multiphase microstructure was revealed for the powder and coating, whereas a chemically ordered bcc phase occurred as the main phase. The thermal spray process resulted in a slightly changed lattice parameter of the main phase and an additional phase. In comparison with a hard chrome-plated sample, an increase in wear resistance was achieved. Furthermore, no brittle behaviour occurred under abrasive load in the scratch test. The investigation of wear tracks showed only minor cracking and spallation under maximum load.
|
3 |
Elektronenspektroskopie und Faktoranalyse zur Untersuchung von ionenbeschossenen Metall (Re, Ir, Cr, Fe)-Silizium-SchichtenReiche, Rainer 29 January 2000 (has links) (PDF)
No description available.
|
4 |
Elektronenspektroskopie und Faktoranalyse zur Untersuchung von ionenbeschossenen Metall (Re, Ir, Cr, Fe)-Silizium-SchichtenReiche, Rainer 07 February 2000 (has links)
No description available.
|
Page generated in 0.0711 seconds