• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Valorisation des fines de lavage de granulats : application à la construction en terre crue / Development of re-use ways for washing aggregates sludges : application to unfired earth construction

Flament, Cédric 12 December 2013 (has links)
Les fines de lavage de carrières sont à l’heure actuelle peu valorisées. Pourtant, leurs caractéristiques physiques font de ces fines une matière première intéressante pour le domaine de la construction. L’objectif de cette thèse est de développer la formulation de produits préfabriqués non porteurs à base de fines de lavage, en considérant ces fines comme de la terre crue. Deux catégories de produits préfabriqués sont visées : un produit dit « lourd » (brique de terre comprimée) et un produit « léger » (carreau). Pour la valorisation en BTC, une étude de compacité par essai Proctor a permis de cibler la teneur en eau de fabrication et la masse volumique sèche à obtenir. Les performances mécaniques des briques ont été améliorées par surcompactage, renforcement granulaire et traitement au liant hydraulique. L’étude de formulation du carreau a associé les fines de lavage et la chènevotte. La consistance des mélanges à l’état frais a été étudiée avec le consistomètre VEBE. Les performances mécaniques en flexion et en compression des mélanges fibrés ont été mesurées. De la chaux et un superplastifiant ont été ajoutés dans la formulation pour satisfaire aux conditions de tenue mécanique. Les deux voies de valorisation ont été validées par mesures des performances physico-mécaniques sur produits fabriqués à l’échelle industrielle. La formulation optimale de BTC valorise près de 80% de fines de lavage et se classe dans la catégorie BTC 40 de la norme expérimentale XP13-901 (brique faiblement capillaire et résistante à la projection en eau). La formulation optimale de carreau se compose de 60% de fines de lavage, et répond aux exigences mécaniques des carreaux de plâtre. / Currently, few re-use ways are developed with clay fines from washing units in quarries. However, these clayey fines represent interesting materials for construction domain. This research work aims to develop non-load bearing precast products and to re-use these fines without thermal treatment as for unfired clay products. Two types of precast products are wished: a “heavy” product (compressed earth brick) and a “light” product (tile hemp-clay).For the CEB re-use way, the level of compaction has to be high. Proctor tests have been done to define the moisture content and dry density to obtain. Mechanical performances of bricks have been increased by overcompaction, granular reinforcement and lime treatment.For the tile re-use way, mixes with quarry fines and hemp have been studied. The behaviour of fresh material has been studied with VEBE consistometer. Flexural and compression strengths have been measured on hardened mixes. Lime and water-reducing agent have been necessary for a good mechanical behaviour.The two re-use ways have been validated by measuring mechanical and physical performances of products manufactured at industrial scale. The optimal mix for CEB includes almost 80% of quarry fines. The CEB is classed in BTC40 category according to experimental standard XP13-901 (brick with a low water absorption level and resistant to water spray). The optimal mix for tile includes 60% of quarry fines and satisfies mechanical requirements for gypsum blocks.
12

Comportement hygro-thermo-mécanique de matériaux structuraux pour la construction associant des fibres de kénaf à des terres argileuses / Hygro-thermo-mechanical behavior of structural materials for the construction associating kenaff fibers with clayed lands

Laibi, Babatounde 21 December 2017 (has links)
Les briques de terre compressée (BTC) à la façon traditionnelle au Bénin présentent de piètres propriétés mécaniques, ce qui explique que les populations recourent aux parpaings de ciment relativement trop couteux et dont l’emploi affecte fortement les ressources en eau et en énergie. Ce travail propose des pistes d’amélioration des BTC pour l’écoconstruction par l’ajout de fibres végétales à des sols usités localement pour la construction. Cette stratégie permet de valoriser les matières premières minérales et végétales dans un domaine d’activités qui concerne une grande partie de la population. Dans un premier temps, un sol a été choisi d’après sa composition chimique, ses propriétés physiques, mécaniques et technologiques. Le choix de la fibre de kénaf pour le renforcement de la matrice minérale se justifie par ses excellentes propriétés mécaniques spécifiques et sa disponibilité à très faible coût. Les effets des fibres sur le comportement du sol au jeune âge, puis sur les comportements mécanique et hygrothermique des matériaux consolidés sous 5 MPa (pression applicable avec les équipements facilement disponibles au Bénin), ont été étudiés pour trois taux massiques de fibres (0,5%; 1% et 1,5% relativement au sol) dans différentes longueurs (5, 10, 20 et 30 mm). Les résultats indiquent une nette amélioration du comportement mécanique des BTC renforcés par le kénaf en termes des résistances à la flexion et à la compression, et de la résistance à la rupture catastrophique (comportement pseudo ductile). Les résultats les plus élevés sont obtenus pour une teneur de 0,5% de fibres de longueur 30 mm. L’ajout de ciment seul au sol fibré (taux de 3, 5 et 7%) ou de ciment associé au laitier de haut fourneau (taux de 3-5% et 5-10%, respectivement) permet en sus d’améliorer de façon importante la résistance à la prise d’eau. Les meilleurs résultats sont obtenus avec 5% de ciment et 10% de laitier de haut fourneau. Les mesures réalisées en chambre biclimatique ont permis de caractériser les matériaux comme paroi séparatrice, en étudiant les transferts de chaleur et de vapeur d’eau. Les résultats mettent en évidence l’effet significatif de l’ajout d’un liant au BTC : L’ajout d’un liant diminue le déphasage et augmente l’atténuation du matériau. Les meilleurs résultats de comportement hygrothermique sont obtenus pour le sol fibré.Cette étude démontre qu’il est possible de produire au Bénin, à partir de matières premières locales et avec des équipements peu onéreux, des éco-matériaux aux propriétés mécaniques et hygrothermiques satisfaisantes pour la construction d’habitat de type R+1. / Traditional Compressed Earth Blocks (CEB) in the Republic of Benin have poor mechanical properties, this justifies why people rely on relatively expensive cement blocks; the use of which greatly affects resources such as water and energy. In this work we have proposed ways to enhance CEB properties for eco-construction by adding plant fibers to locally used construction's soils. This strategy makes it possible to value mineral and vegetable raw materials in a field of an activity that is common to a large part of the population. At first, a soil was chosen according to its chemical composition, its physical, mechanical and technological properties. The choice of kenaf fiber for the reinforcement of the mineral matrix isjustified by its excellent specific mechanical properties and its availability at very low cost. The effects of fibers on soil behavior at young age and on the mechanical and hygrothermal behavior of consolidated materials under 5 MPa (pressure applicable with equipment readily available in Benin) were studied for three mass content of fibers relatively to the soil (0.5% 1% and 1.5%) and different lengths (5, 10, 20 and 30 mm). The results indicated a remarkable improvement in the mechanical behavior of kenaf-reinforced CEBs in terms of flexural and compressive strengths and tolerance to damage. The highest results were obtained with 0.5% of fibers 30 mm long. The addition of a binder (3, 5 and 7% of cement) or (3-5% and 5-10% of cement and blast furnace slag mix) allowed an important reduction in water uptake. The best mechanical results were obtained for a biocomposite made up with BAK soil, 0.5% of flax fibers 30 mm long and a mix of 5% cement and 10% blast furnace slag. Measurements carried out in a biclimatic chamber made it possible to characterize the hydric and thermal behavior of the soil-based materials. The addition of a binder decreases the phase shift and increases the attenuation of the material. These different results show that it is possible to produce in Benin with the available equipment, CEB with mechanical and hygrothermal properties sufficient enought for the construction of type R + 1 habitat.
13

Mejora de las propiedades mecánicas de los bloques de tierra comprimida (BTC) reforzados con cemento y fibra natural

Cabrera Vargas, Marlo Manuel, Tello Ormeño, Jose Daniel 11 January 2021 (has links)
Existe en la actualidad una intensa búsqueda constante de recursos y tecnologías menos contaminantes, que consumen menos energía en la construcción. El bloque de tierra comprimida (BTC) reforzado con fibra natural puede ser una alternativa efectiva. Este estudio presenta los resultados de una investigación para establecer las propiedades mecánicas del BTC estabilizado con cemento y reforzado con fibra de bagazo de caña. Se consideró evaluar las siguientes combinaciones BTC, BTCE (6% de cemento), BTCB-I (4% de cemento y 0.5% de fibra) y BTC-II (4% de cemento y 1% de fibra). Además, los resultados de las pruebas mecánicas se compararon con normas establecidas y con otras investigaciones relacionadas al tema. Se observó que, con el aumento de cemento, la resistencia de los bloques de tierra comienza a incrementarse gradualmente. Sin embargo, se puede reducir la cantidad de cemento reemplazándola con un mínimo de 0.5% de fibra natural en estado seco, representando bajas pérdidas de resistencia. De la investigación se sugieren analizar coeficientes de diseño a diferentes condiciones, considerando que con un mínimo de 4% de cemento y un 0.5-1% de fibra fue suficiente para producir BTC que cumplan con los requisitos estipulados en la norma peruana. / There is currently an intense constant search for less polluting resources and technologies, which consume less energy in construction. Natural fiber reinforced compressed earth block (BTC) can be an effective alternative. This study presents the results of an investigation to establish the mechanical properties of BTC stabilized with cement and reinforced with cane bagasse fiber. It was considered to evaluate the following combinations BTC, BTCE (6% cement), BTC-I (4% cement and 0.5% fiber) and BTC-II (4% cement and 1% fiber). In addition, the results of the mechanical tests were compared with established norms and with other research related to the subject. It was observed that, with the increase of cement, the strength of the earth blocks begins to increase gradually. But nevertheless, the amount of cement can be reduced by replacing it with a minimum of 0.5% natural fiber in the dry state, representing low resistance losses. From the reach it is suggested to analyze design coefficients at different conditions, considering that a minimum of 4% cement and 0.5-1% fiber was enough to produce BTC that comply with the provisions of the Peruvian standard. / Trabajo de investigación
14

Étude du comportement hygro- mécanique de la terre crue hyper-compactée pour la construction durable / Hygro-mechanical characterisation of hypercompacted earth for sustainable construction

Bruno, Agostino Walter 28 October 2016 (has links)
Cette étude vise à contribuer au développement d’un produit de construction à faible impact environnemental utilisant la terre crue. Pour cela, le comportement hygro-mécanique de la terre crue compressée à haute pression par une technique novatrice mise au point dans ce projet a été caractérisé. De plus, plusieurs méthodes de stabilisation ont été évaluées afin d’améliorer la durabilité de ce matériau, notamment vis-à-vis de l’érosion induite par l’eau. Une vaste campagne d’essais expérimentaux a été menée sur ces matériaux stabilisés ou non, à deux échelles différentes : les caractérisations des échantillons cylindriques (petite échelle) ont tout d’abord permis de sélectionner la formulation optimale. Par la suite, les tests menés à grande échelle sur les briques de terre compressée ont contribué à développer un produit pour la construction. Une nouvelle technique de fabrication basée sur l’application d’une contrainte de compactage très élevée (hyper-compactage) a été mise au point. Son objectif principal est d’augmenter la densité du matériau afin d’améliorer ses performances mécaniques. Les échantillons compactés par la méthode proposée présentent une densité sèche d’environ 2320 kg/m3, ce qui représente la valeur la plus élevée jamais enregistrée dans la littérature pour une terre non stabilisée. Les effets de la contrainte de compactage sur la microstructure du matériau ont été analysés par intrusion au mercure et adsorption d’azote liquide. Les résultats montrent que l’augmentation de la contrainte de compactage réduit la porosité du matériau, majoritairement les grands pores inter-agrégats. Cependant, le compactage mécanique influence peu les petits pores intra-agrégats. L'approfondissement de la caractérisation des propriétés microstructurales des échantillons stabilisés constitue un développement intéressant de ce travail. La résistance et la rigidité des échantillons non stabilisés et stabilisés ont été mesurées. Ces essais mécaniques confirment que la méthode d'hyper-compactage permet d’améliorer grandement la réponse mécanique du matériau par rapport aux techniques de fabrication existantes. Ainsi, les briques réalisées présentent une résistance en compression comparable à celle-là des matériaux traditionnels de construction (e.g. terre stabilisée et briques en terre cuite). Pour compléter cette étude, des essais mécaniques à l’échelle paroi sont à mener. Le comportement hygroscopique des échantillons stabilisés et non stabilisés a été analysé par la mesure du paramètre MBV (i.e. Moisture Buffering Value), qui traduit la capacité d’échange avec la vapeur d’eau. Il s'avère que la terre non stabilisée possède une excellente capacité à absorber et relarguer l’humidité ambiante. Cette capacité est, par contre, réduite pour les échantillons stabilisés testés dans le cadre de cette étude. La caractérisation du comportement thermique de la terre compressée à haute pression ainsi que l’analyse expérimentale des transferts thermo-hygroscopiques à l’échelle paroi représentent deux compléments d'étude afin de préciser le comportement hygroscopique d'un mur à base de terre crue. Enfin, la durabilité par rapport à l’érosion induite par l’eau des briques stabilisées et non stabilisées a été estimée à travers les essais d’immersion, de succion et de contact qui sont prévus par la norme DIN 18945 (2013). Les briques stabilisées montrent une meilleure résistance à l’eau par rapport aux briques non stabilisées. Toutefois, des études supplémentaires sont nécessaires pour améliorer les méthodes de stabilisation garantissant la durabilité dans le cas d'applications structurelles exposées aux intempéries, tout en maintenant de bonnes performances hygro-mécaniques et un faible impact environnemental. / The present work explores the hygro-mechanical behaviour of a raw earth material and investigates different stabilisation techniques to improve the durability of the material against water erosion. An extensive campaign of laboratory tests was performed on both unstabilised and stabilised materials at two different scales: small cylindrical samples and large bricks. An innovative manufacturing method based on the application of very high compaction pressures (hypercompaction) was proposed. Also, the compaction load was maintained constant for a sufficient period of time to allow soil consolidation. The main objective was to increase material density, thus improving mechanical performance. Samples compacted with the proposed method exhibited a dry density of about 2320 kg/m3, which is the highest value registered in the literature for an unstabilised earthen material. The effect of the compaction pressure on the material fabric was assessed by means of mercury intrusion porosimetry and nitrogen adsorption tests. Results showed that the increase of compaction pressure reduced material porosity with major effects on large inter-aggregate pores. On the contrary, small intra-aggregate pores were not affected by the mechanical compaction. Mechanical tests were then performed to measure stiffness and strength of both unstabilised and stabilised samples. These tests demonstrated that hypercompaction can largely improve the mechanical response of the material over conventional manufacturing methods. Hypercompacted bricks showed a compressive strength comparable with that of traditional building materials, such as stabilised compressed earth and fired bricks. The hygroscopic behaviour of both unstabilised and stabilised samples was investigated. The capacity of the samples to absorb/release water vapour was assessed by measuring their moisture buffering value (MBV). Results showed that unstabilised earth has an excellent capacity to buffer ambient humidity. This capacity was significantly reduced by the different stabilisation techniques tested in the present work. Finally, the durability against water erosion of both unstabilised and stabilised bricks was assessed by performing different tests prescribed by the norm DIN 18945 (2013). Stabilised bricks exhibited a higher resistance against water erosion compared to unstabilised bricks. Still, these materials cannot be adopted for structural applications exposed to natural weathering as indicated by the norm DIN 18945 (2013). Therefore, further investigation is required to identify novel stabilisation methods that can balance the needs of sustainability, durability, moisture buffering and mechanical performance.
15

Propuesta de adición de fibras de bagazo de caña en bloques de tierra comprimida estabilizados con cemento para su uso como unidad de albañilería en la construcción de viviendas rurales resistentes a las lluvias en la ciudad de Piura / Proposal for the addition of bagasse fibres in compressed earth blocks stabilised with cement for use as a masonry unit in the construction of rain-resistant rural housing in the city of piura

Cabrera Vargas, Marlo Manuel, Tello Ormeño , Jose Daniel 21 February 2022 (has links)
La tierra es uno de los materiales de construcción más antiguos que ha sido utilizado de diferentes maneras para proporcionar construcciones sociales, económicas y ambientales. La realidad en nuestro país no es ajena y se refleja en la cantidad de viviendas de tierra en las zonas rurales de la costa y sierra. No obstante, al evaluar su comportamiento frente a los fenómenos climáticos se ha constatado que estas viviendas han sufrido grandes estragos al estar expuestas a intensas lluvias, perdiendo su capacidad portante. Este escenario es una oportunidad para que nuevas investigaciones desarrollen técnicas alternativas con tierra. Entre ellas, la presente investigación aborda a los bloques de tierra comprimida (BTC), una versión moderna del adobe, estabilizados químicamente con cemento y fibras de bagazo de caña de azúcar. Para validar y comparar su comportamiento, se fabricaron los BTC y fueron sometidos a pruebas físicas y mecánicas en estado seco y saturado, además de ser evaluadas económicamente. La dosis de 4% de cemento y 0.75% de fibra de bagazo de caña tuvo el mejor desempeño de resistencia a la compresión y flexión en estado seco (2.31 y 0.66 Mpa respectivamente) como también en estado saturado (1.65 y 0.41 Mpa respectivamente), además de tener daños leves y una menor absorción de agua en las pruebas físicas. Por otro lado, se descubrió que al aumentar la cantidad de fibra a 1% en la mezcla suelo-cemento el comportamiento mecánico del BTC se mantenía estable y en algunos casos tiende a disminuir su resistencia, es decir que el porcentaje de fibra más óptimo en términos mecánicos y físicos para el BTC es de 0.75%. / Earth is one of the oldest building materials that has been used in different ways to provide social, economic and environmental constructions. The reality in our country is no different and is reflected in the number of earthen houses in the rural areas of the coast and highlands. However, when evaluating their behavior in the face of climatic phenomena, it has been found that these dwellings have suffered great damage when exposed to heavy rains, losing their load-bearing capacity. This scenario is an opportunity for new research to develop alternative earth techniques. Among them, the present research addresses compressed earth blocks (CEB), a modern version of adobe, chemically stabilized with cement and sugar cane bagasse fibers. To validate and compare their performance, BTCs were manufactured and subjected to physical and mechanical tests in dry and saturated states, as well as being economically evaluated. The dose of 4% cement and 0.75% bagasse fiber had the best compressive and flexural strength performance in dry state (2.31 and 0.66 Mpa respectively) as well as in saturated state (1.65 and 0.41 Mpa respectively), in addition to having slight damage and lower water absorption in the physical tests. On the other hand, it was found that by increasing the amount of fiber to 1% in the soil-cement mixture, the mechanical behavior of BTC remained stable and in some cases tended to decrease its strength, i.e. the most optimal percentage of fiber in mechanical and physical terms for BTC is 0.75%. / Tesis

Page generated in 0.4536 seconds