1 |
Damage Tolerance of Unidirectional Basalt/Epoxy Composites In Co-Cured Aramid SleevesAllen, Devin Nelson 12 December 2011 (has links) (PDF)
Unidirectional basalt fiber rods consolidated with an aramid sleeve were measured for compression strength after impact at various energy levels and compared to undamaged control specimens. These structural elements represent local members of open three-dimensional composite lattice structures (e.g., based on isogrid or IsoTruss® technologies) that are continuously fabricated using advanced three-dimensional braiding techniques. The unidirectional core specimens, nominally 8 mm (5/16") and 11 mm (7/16") in diameter, were manufactured using bi-directional braided sleeves or unidirectional spiral sleeves with full or partial (approximately half) coverage of the core fibers. The 51 mm (2") specimens were shorter than the critical buckling length, ensuring the formation of kink bands, typical of strength-controlled compression failure of unidirectional composites. The test results indicate an approximate decrease in the average undamaged compression strength of approximately 1/3 and 2/3 when impacted with 5 J (3.7 ft-lbs) and 10 J (7.4 ft-lbs) for the 8 mm (5/16") diameter specimens and 10 J (7.4 ft-lbs.) and 20 J (14.8 ft-lbs.) for the 11 mm (7/16") diameter specimens, respectively. The aramid sleeves improved the damage tolerance of the composite members, with the amount of coverage having the greatest effect; full coverage exhibiting up to 45% greater strength than partial coverage. Braided sleeves improved compression strength after impact by up to 23% over spiral sleeves, but generally had little effect on damage tolerance. Larger diameter specimens tend to be more resistant to damage than those specimens of a smaller diameter. The compressive material properties for undamaged basalt composites are also presented with the average compressive strength being 800 MPa (116 ksi).
|
2 |
Damage Tolerance of Unidirectional Carbon and Fiberglass Composites with Aramid SleevesSika, Charles Andrew 14 March 2012 (has links) (PDF)
Unidirectional carbon fiber and fiberglass epoxy composite elements consolidated with aramid sleeves were radially impacted at 5 J (3.7 ft-lbs) and 10 J (7.4 ft-lbs), tested under compression, and compared to undamaged control specimens. These structural elements represent local members of open three-dimensional composite lattice structures (e.g., based on isogrid or IsoTruss® technologies). Advanced three-dimensional braiding techniques were used to continuously fabricate these specimens. The unidirectional core specimens, 8 mm (5/16 in) in diameter, were manufactured with various sleeve patterns. Bi-directional braided sleeves and unidirectional spiral sleeves ranged from a nominal full to half coverage. These specimens were tested for compression strength after impact. This research used an unsupported length of 50.8 mm (2.0 in) specimens to ensure a strength-controlled compression failure. Compression strength of undamaged unidirectional carbon fiber and fiberglass epoxy composites is virtually unaffected by sleeve type and sleeve coverage. Fiberglass/epoxy configurations exhibited approximately 1/2 and 2/3 reduction in compression strength relative to undamaged configurations after impact with 5 J (3.7 ft-lbs) and 10 J (7.4 ft-lbs), respectively. Increasing aramid sleeve coverage and/or increasing the interweaving of an aramid sleeve (i.e., braid vs. spiral) increases the damage tolerance of fiberglass/epoxy composite elements. Damaged carbon/epoxy composites exhibited an approximate decrease in strength of 70% and 75% after 5 J and 10 J of impact, respectively, relative to undamaged configurations. The results verify that an aramid sleeve, regardless of type (braid or spiral), facilitates consolidation of the carbon fiber and fiberglass epoxy core. Not surprisingly, full coverage configurations exhibit greater compression strength after impact than half coverage configurations.
|
3 |
Axial Compression Behavior of Unidirectional Carbon/Epoxy Tubes and Rods Before and After ImpactOxborrow, Ian Michael 01 December 2014 (has links) (PDF)
Compression tests were performed on damaged and undamaged rods and tubes made from unidirectional carbon/epoxy composite and lightweight core materials. Tested samples represent local members in an open, three-dimensional, composite lattice structure. Testing was performed in order to establish effective core materials to use in order to increase the buckling length of local IsoTruss® members while maintaining low weight. Members were formed from T700SC-12K-50C carbon fiber with UF6639-100 resin. Core materials consisted of 3/8-inch (0.953 cm) outside diameter Teflon® rods, Teflon® tubes, nylon rods, nylon tubes, Ertalyte® rods, and Duratron® rods. All 3/8-inch (0.953-cm) cores were each surrounded by 50 tows of carbon/epoxy prepreg. Control samples were also created with 50 carbon/epoxy prepreg tows. Half-inch (1.27 cm) outside diameter copper tubes were used as core materials for tubes consisting of 100 carbon/epoxy prepreg tows. Control samples to compare against samples with copper cores were also created with 100 tows of carbon/epoxy prepreg. Impact damage was inflicted using a cylindrical tup with 20 ft-lb impact energy.In undamaged specimens, nylon tube showed the highest structural efficiency. Nylon showed structural efficiencies much higher than other materials when comparing undamaged samples. In damaged specimens Ertalyte® rods showed the highest structural efficiency. Core stiffness appeared to control the level of absorbed impact energy with stiffer cores absorbing and dissipating more energy than softer equivalents during impact.
|
4 |
Damage Tolerance of Buckling-Critical Unidirectional Carbon, Glass,and Basalt Fiber Composites in Co-Cured Aramid SleevesEmbley, Michael D. 12 December 2011 (has links) (PDF)
Compression strength after impact tests were conducted on unidirectional composite rods with sleeves. These elements represent local members of open three-dimensional composite lattice structures (e.g., based on isogrid or IsoTruss® technologies). The unidirectional cores composed of carbon, glass, or basalt fiber/epoxy composites were co-cured in aramid sleeves. Sleeve patterns included both bi-directional (unsymmetric) braids and unidirectional spiral wraps with sleeve coverage ranging from nominally half to full. The diameters were nominally 8 and 11 mm (5/16 and 7/16 in). The larger diameter had nominally twice the cross-sectional area, to quantify the effects of scaling. The specimens were long enough to encourage local buckling failure as expected in members of typical composite lattice structures. The unsupported lengths varied from 127 mm (5.0 in) to 160 mm (6.3 in). Specimens were radially impacted at mid-length with energy levels ranging from 0 to 20 J (0 to 14.8 ft-lbs) and tested in longitudinal compression to quantify the effects of local impact damage on the buckling strength. In undamaged specimens, sleeve type and sleeve coverage have no effect on the ultimate compression strength of carbon, glass, or basalt composites (7% or less standard deviation for each material). When impacted, the influence of sleeve type and sleeve coverage varies with the type of fiber in the unidirectional core. Sleeve type and coverage did not affect the compression strength after impact for fiberglass composites. On the other hand, both carbon and basalt composites exhibited improved performance with braided (vs. spiral) sleeves (up to 34% stronger) and full (vs. half) coverage (up to 38% stronger). The compression strength of carbon configurations decreases with increasing impact energy regardless of sleeve type or coverage. The higher flexibility of glass and basalt composites, however, allowed some configurations to maintain the same compression strength after impact as their undamaged counterparts, at lower impact energy levels. Doubling cross-sectional area of basalt composites significantly improves the stiffness and compression strength after impact, more than doubling the impact energy required to achieve the same compression strength.
|
Page generated in 0.125 seconds