• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 40
  • 38
  • 20
  • 20
  • 10
  • 7
  • 7
  • 6
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 409
  • 107
  • 61
  • 54
  • 48
  • 47
  • 45
  • 45
  • 43
  • 42
  • 41
  • 38
  • 38
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

EXPERIMENTAL INVESTIGATION OF RAPID FLOW TRANSIENTS IN AN INLET/COMPRESSOR SYSTEM, INDUCED BY SHORT-DURATION ACOUSTIC AND ENTROPY DISTURBANCES

OPALSKI, ANTHONY BENEDICT 21 May 2002 (has links)
No description available.
112

A NUMERICAL STUDY OF A TRANSONIC COMPRESSOR ROTOR AT LARGE TIP CLEARANCE

MERZ, LOUISE F. 17 April 2003 (has links)
No description available.
113

Unsteady Analysis of a Counter-Rotating Aspirated Compressor Using Phase-Lag and Non-Linear Harmonic Methods

Knapke, Robert D. January 2011 (has links)
No description available.
114

Effect of Self Recirculation Casing Treatment on the Performance of a TurbochargerCentrifugal Compressor

Gancedo, Matthieu 12 October 2015 (has links)
No description available.
115

Observed Flow Characteristics of Rotating Stall Inception and its Prevention Using Discrete Tip Injection in the NASA Stage 35 Axial Compressor with New Analysis Methods

Johnson, Benjamin P. 05 September 2008 (has links)
No description available.
116

The Numerical Investigation of the Effects of Sand Ingestion on Compressor Blade Erosion

Cagdas, Taha Irfan 10 January 2024 (has links)
ABSTRACT The performance of aircraft engines can be significantly affected by the variety of foreign particles that are mixed into the air while operating under miscellaneous conditions. In particular, aircraft engines that operate in sandy or dusty conditions may fail within minutes of exposure to particle-laden flow due to foreign particle deposition on hot section components or erosion occurring on the compressor and turbine blades. For these reasons, the effect of sand ingestion on erosion, which may occur in the turbine and compressor blades, was studied in this master's thesis. In this master's thesis, the effect of sand ingestion on erosion on the M250 turboshaft engine's compressor blades will be investigated with the aid of numerical methods. In this study, we used the OpenFOAM software to solve the multiphase flow problem from the standpoint of finite control methods and the Eulerian-Lagrangian framework. The initial sand distribution conditions were taken from the Ph.D. thesis written by Olshefski, K. T. (2023) [1]. The compressor blade was modeled as 2D, which has a NACA 6510 profile shape, with a chord length of 63 mm. The results show that the leading edge and the suction side of the compressor, i.e. the upper half of the compressor, eroded more compared to the trailing edge, and the pressure side. Results also show that as the sand particle distribution becomes non-uniform the most eroded region shifts toward the trailing edge. In addition, for varying angles of attack, the region where the erosion occurs alters periodically. We observed that as the angle of attack increases, the eroded region shifts toward the trailing edge, but when the angle of attack is kept increasing the eroded region shifts back to the leading edge again. In conclusion, the non-uniformity of sand particle loading has a strong effect on the determination of the eroded regions. Furthermore, the variation of the angle of attack has a huge role in both the determination of eroded regions and the amount of eroded material. / Master of Science / GENERAL AUDIENCE ABSTRACT In this master's thesis, the effect of sand ingestion on compressor blade erosion was investigated with the help of numerical methods. The compressor is one of the vital parts of air-breathing engines such as turboshaft, turbofan, turbojet, and turboprop engines. Therefore, the erosion on the compressor blades may cause pressure surges, which could cause severe problems in the operation of aircraft or airplanes operating under dusty conditions. Historically, it is reported that a TransAmerican aircraft propelled by Alison T-56 engines lost two of its four engines after 3 to 4 minutes of exposure to volcanic ash while flying over Mt. St. Helens in 1980. Another example of the effects of sand ingestion is an MV-22 Osprey crash that happened during a training exercise in Hawaii, claiming the lives of two US Marines and injuring twenty other personnel in 2015. It was attributed that the cause of the fatal accident was the ingestion of dust that caused engine failure. Therefore, our intention in studying this field is to have an understanding of the regions of compressor blades that are vulnerable to erosion. In this master's thesis, numerical methods based on the finite volume method were used to obtain numerical solutions to estimate erosion on the compressor blade by utilizing OpenFOAM. We would like to recommend a nice OpenFOAM tutorial for those who are interested in applying numerical methods using OpenFOAM, taught by Jozsef Nagy accessible on YouTube, https://www.youtube.com/@OpenFOAMJozsefNagy. Also, for creating geometry and mesh generation of an airfoil for the use of OpenFOAM, we would like to recommend the tutorial presented by Ali Ikhsanul, accessible on YouTube via this link https://www.youtube.com/@aliikhsanul7982. These tutorial videos could help those who are interested in Openfoam but do not have much experience with Openfoam. The work in this master's thesis indicates that the leading edge of the compressor blade is more prone to be eroded than the trailing edge. In addition, it is shown that the eroded region distribution is highly dependent on the angle of attack of sand particles.
117

The Effects of Free Stream Turbulence on the Flow Field through a Compressor Cascade

Muthanna, Chittiappa 26 August 2002 (has links)
The flow through a compressor cascade with tip leakage has been studied experimentally. The cascade of GE rotor B section blades had an inlet angle of 65.1º, a stagger angle of 56.9º, and a solidity of 1.08. The final turning angle of the cascade was 11.8º. This compressor configuration was representative of the core compressor of an aircraft engine. The cascade was operated with a tip gap of 1.65%, and operated at a Reynolds number based on the chord length (0.254 m) of 388,000. Measurements were made at 8 axial locations to reveal the structure of the flow as it evolved through the cascade. Measurements were also made to reveal the effects of grid generated turbulence on this flow. The data set is unique in that not only does it give a comparison of elevated free stream turbulence effects, but also documents the developing flow through the blade row of a compressor cascade with tip leakage. Measurements were made at a total of 8 locations 0.8, 0.23 axial chords upstream and 0, 0.27, 0.48, 0.77, 0.98, and 1.26 axial chords downstream of the leading edge of the blade row for both inflow turbulence cases. The measurements revealed the formation and development of the tip leakage vortex within the passage. The tip leakage vortex becomes apparent at approximately X/ca= 0.27 and dominated much of the endwall flow. The tip leakage vortex is characterized by high streamwise velocity deficits, high vorticity and high turbulence kinetic energy levels. The result showed that between 0.77 and 0.98 axial chords downstream of the leading edge, the vortex structure and behavior changes. The effects of grid generated turbulence were also documented. The results revealed significant effects on the flow field. The results showed a 4% decrease in the blade loading and a 20% reduction in the vorticity levels within tip leakage vortex. There was also a shift in the vortex path, showing a shift close to the suction side with grid generated turbulence, indicating the strength of the vortex was decreased. Circulation calculations showed this reduction, and also indicated that the tip leakage vortex increased in size by about 30%. The results revealed that overall, the turbulence kinetic energy levels in the tip leakage vortex were increased, with the most drastic change occurring at X/ca= 0.77. / Ph. D.
118

Non-linear finite element thermo-hydrodynamic analysis of oil ring seals used in high pressure centrifugal compressors

Baheti, Sanjay K. 06 June 2008 (has links)
The analysis of oil seals is of great concern for the proper design of high pressure centrifugal compressors, because they can have significant influence on the dynamic stability of the compressor rotor. The lack of adequate analytical tools highlight the need for this type of study. An analytical tool to evaluate the oil seal characteristics, perform linear stability analysis of the compressor rotor and nonlinear transient analysis of the compressor rotor and the seal ring has been developed. An iterative finite element method is used to solve the non-linear and coupled hydrodynamic and thermal equations for the pressure and temperature distributions in oil seals. The perturbation technique is employed to determine the static and dynamic characteristics of oil seals. The hydrodynamic forces are calculated by integrating the pressure distribution along and around the oil seal. Eigenvalue analysis is performed to do the linear stability analysis of the compressor rotor. A numerical integration technique is used to solve the non-linear equations of motion of the seal ring and compressor rotor. This analysis has the ability to handle tapered seals, circumferentially grooved seals and seals with shaft misalignment. Results obtained from linear stability analysis and non-linear transient analysis for different seal geometries, including shaft misalignment, are presented. For centered seals, results obtained are in good agreement with a previous finite difference analysis. At an operating eccentricity of 0.098, the maximum percentage differences in the cross-coupled stiffness and direct damping coefficients obtained from this analysis and the finite difference analysis are 5.1 % and 1.5 % respectively. For eccentric seals, use of the true temperature distribution gives significantly different results. At an operating eccentricity of 0.497, the maximum percentage differences in the cross-coupled stiffness and direct damping coefficients obtained from this analysis and the finite difference analysis are 17.7 % and 22.9 % respectively. This analysis shows that the sharp edge grooves decrease the axial flow rate. In addition, groove depth typically applied to industrial seals is shown to be effective in breaking up the hydrodynamic pressures. Tapered and circumstantially grooved seals are shown to enhance both the locking mechanism in the seal ring and the dynamic stability of the compressor rotor. The resulting computer program gives the designer of compressors with liquid seals a much needed capability that is not available from any other known source. / Ph. D.
119

A Comparison of Two Air Compressors for PEM Fuel Cell Systems

Kulp, Galen W. 15 January 2002 (has links)
Proton exchange membrane (PEM) fuel cells are considered one of the best potential alternative power sources for automobiles. For this application, high efficiency and high power density are required. Pressurizing the fuel cell system can give higher efficiency, higher power density and better water balance characteristics for the fuel cell, but pressurization uses a percentage of the fuel cell output power. The compressor used to elevate the pressure has a direct effect on the system efficiency and water balance characteristics. A variety of compressors are being developed for fuel cell applications. Two compressor and expander technologies are discussed in this paper: the Opcon 1050 positive displacement twin-screw compressor and expander, and a Honeywell turbocompressor and expander. The effect of these compressors and expanders on the system at maximum load, low load, and set minimum airflow are examined. The effects of ambient conditions, stack temperature, and increased twin-screw compressor pressure are also examined. The turbocompressor proves to be a superior machine in terms of efficiency, and therefore offers the most promising effect on system efficiency of the two compressors. The twin-screw compressor, on the other hand, offers more flexible pressure ratio and better water balance characteristics at low fuel cell loads, which is an important factor with PEM fuel cell systems. Increased ambient and stack temperature has a significant negative effect on the water balance and a small positive effect on efficiency. Increasing the pressure for the twin-screw compressor significantly improves the water balance characteristics with some loss in efficiency. These results show the importance of determining the system operating range and operating conditions in the choice of a compressor for a fuel cell system / Master of Science
120

Estudo da propagação de pulsos Laser através de um sistema amplificador de pulsos ultracurtos para o desenvolvimento de um alargador temporal do tipo Öffner / Study of Laser pulses propagation through an ultrashort pulse amplifying systems for the development of an Öffner temporal stretcher

Cordeiro, Thiago da Silva 22 May 2009 (has links)
Foi feito o estudo da propagação de pulsos laser através de um sistema amplificador de pulsos ultracurtos com meios dispersivos e modificadores de banda espectral. Deu-se ênfase à concepção de um alargador (ou alongador) de pulsos ultracurtos para substituir o já existente no sistema CPA híbrido de Ti:Safira/Cr:LiSAF em operação no Centro de Lasers e Aplicações do IPEN/CNEN-SP. Fez-se o desenvolvimento teórico e o estudo de um alongador temporal do tipo Öffner, livre de aberrações esféricas, objetivando obter uma razão de alargamento superior à existente no sistema em operação. Estudou-se também a influência das componentes de fase do sistema na duração final dos pulsos amplificados, e o sistema atual teve seus componentes limitantes de largura de banda mapeados, com o objetivo de conhecer as condições nas quais um novo alongador temporal deve ser inserido no sistema. Com base nessas medidas, foram implementadas rotinas computacionais para se determinar as consequências da passagem de um pulso por um componente limitante de largura de banda. / The study of laser pulses propagation through an ultrashort pulses amplifying system containing dispersive and spectral modifying media was performed. The study emphasis was the development of an ultrashort pulse stretcher to replace the one inside a hybrid Ti:Sapphire/Cr:LiSAF CPA system operating at the Center for Lasers and Applications at IPEN/CNEN-SP. A spherical aberration free Öffner stretcher was theoretically studied, aiming to obtain a stretching ratio larger than the one available in our system. The influence of the phase components in the amplified pulse final duration was also studied, and the bandwidth limiting elements of the system in operation were mapped, with the purpose of determining the conditions under which a new stretcher should be implemented. Based on the actual measurements, computing routines were implemented in order to determine the consequences of an ultrashort pulse travelling through a bandwidth limiting component.

Page generated in 0.0745 seconds