281 |
A Computational Analysis of Bio-Inspired Modified Boundary Layers for Acoustic Pressure Shielding in A Turbulent Wall JetUnknown Date (has links)
Surface pressure fluctuations developed by turbulent flow within a boundary layer is a major cause of flow noise from a body and an issue which reveals itself over a wide range of engineering applications. Modified boundary layers (MBLs) inspired by the down coat of an owl’s wing has shown to reduce the acoustic effects caused by flow noise. This thesis investigates the mechanisms that modified boundary layers can provide for reducing the surface pressure fluctuations in a boundary layer. This study analyzes various types of MBLs in a wall jet wind tunnel through computational fluid dynamics and numerical surface pressure spectrum predictions. A novel surface pressure fluctuation spectrum model is developed for use in a wall jet boundary layer and demonstrates high accuracy over a range of Reynolds numbers. Non-dimensional parameters which define the MBL’s geometry and flow environment were found to have a key role in optimizing the acoustic performance. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
|
282 |
Design and Fabrication of Micro-Channels and Numerical Analysis of Droplet Motion Near Microfluidic Return BendsSingh, John-Luke Benjamin January 2019 (has links)
Three-dimensional spheroid arrays represent in vivo activity better than conventional 2D cell culturing. A high-throughput microfluidic chip may be capable of depositing cells into spheroid arrays, but it is difficult to regulate the path of individual cells for deposition. Droplets that encapsulate cells may aid in facilitating cell delivery and deposition in the return bend of a microfluidic chip. In this study, a low-cost method for fabricating polymer-cast microfluidic chips has been developed for rapid device prototyping. Computational fluid dynamic (CFD) simulations were conducted to quantify how a change in geometry or fluid properties affects the dynamics of a droplet. These simulations have shown that the deformation, velocity, and trajectory of a droplet are altered when varying the geometry and fluid properties of a multiphase microfluidic system. This quantitative data will be beneficial for the future design of a microfluidic chip for cell deposition into 3D spheroid arrays.
|
283 |
Hemodynamic Force as a Potential Regulator of Inflammation-Mediated Focal Growth of Saccular Aneurysms in a Rat Model / 炎症依存的な嚢状動脈瘤の局所増大を制御する因子としての血行力学応力Shimizu, Kampei 24 May 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23371号 / 医博第4740号 / 新制||医||1051(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙橋 良輔, 教授 安達 泰治, 教授 YOUSSEFIAN Shohab / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
284 |
A thermo-hydraulic model that represents the current configuration of the SAFARI-1 secondary cooling systemHuisamen, Ewan January 2015 (has links)
This document focuses on the procedure and results of creating a thermohydraulic model of the secondary cooling system of the SAFARI-1 research reactor at the Pelindaba facility of the South African Nuclear Energy Corporation (Necsa) to the west of Pretoria, South Africa. The secondary cooling system is an open recirculating cooling system that comprises an array of parallel-coupled heat exchangers between the primary systems and the main heat sink system, which consists of multiple counterflow-induced draught cooling towers. The original construction of the reactor was a turnkey installation, with no theoretical/technical support or verifiability. The design baseline is therefore not available and it is necessary to reverse-engineer a system that could be modelled and characterised. For the nuclear operator, it is essential to be able to make predictions and systematically implement modifications to improve system performance, such as to understand and modify the control system. Another objective is to identify the critical performance areas of the thermohydraulic system or to determine whether the cooling capacity of the secondary system meets the optimum original design characteristics. The approach was to perform a comprehensive one-dimensional modelling of all the available physical components, which was followed by using existing performance data to verify the accuracy and validity of the developed model. Where performance data is not available, separate analysis through computational fluid dynamics (CFD) modelling is performed to generate the required inputs. The results yielded a model that is accurate within 10%. This is acceptable when compared to the variation within the supplied data, generated and assumed alternatives, and when considering the compounding effect of the large amount of interdependent components, each with their own characteristics and associated performance uncertainties. The model pointed to potential problems within the current system, which comprised either an obstruction in a certain component or faulty measuring equipment. Furthermore, it was found that the current spray nozzles in the cooling towers are underutilised. It should be possible to use the current cooling tower arrangement to support a similar second reactor, although slight modifications would be required to ensure that the current system is not operated beyond its current limits. The interdependent nature of two parallel systems and the variability of the conditions that currently exist would require a similar analysis as the current model to determine the viability of using the existing cooling towers for an additional reactor. / Dissertation (MEng)--University of Pretoria, 2015. / Mechanical and Aeronautical Engineering / MEng / Unrestricted
|
285 |
Thermal analysis of the internal climate condition of a house using a computational modelKnutsen, Christopher 31 January 2021 (has links)
The internal thermal climatic condition of a house is directly affected by how the building envelope (walls, windows and roof) is designed to suit the environment it is exposed to. The way in which the building envelope is constructed has a great affect on the energy required for heating and cooling to maintain human thermal comfort. Understanding how the internal climatic conditions react to the building envelope construction is therefore of great value. This study investigates how the thermal behaviour inside of a simple house reacts to changes made to the building envelope with the objective to predict how these changes will affect human thermal comfort when optimising the design of the house. A three-dimensional numerical model was created using computational fluid dynamic code (Ansys Fluent) to solve the governing equations that describe the thermal properties inside of a simple house. The geometries and thermophysical properties of the model were altered to simulate changes in the building envelope design to determine how these changes affect the internal thermal climate for both summer and winter environmental conditions. Changes that were made to the building envelope geometry and thermophysical properties include: thickness of the exterior walls, size of the window, and the walls and window glazing constant of emissivity. Results showed that there is a substantial difference in indoor temperatures, and heating and cooling patterns, between summer and winter environmental conditions. The thickness of the walls and size of the windows had a minimal effect on internal climate. It was found that the emissivity of the walls and window glazing had a significant effect on the internal climate conditions, where lowering the constant of emissivity allowed for more stable thermal conditions within the human comfort range.
|
286 |
Numerical Simulation of Inclusion Aggregation and Removal in the Gas-stirred LadleXipeng Guo (8108240) 10 December 2019 (has links)
<p>A comprehensive study of inclusion aggregation and removal
in different bottom gas-stirred ladles has been conducted. The unsteady, three
dimensional, isothermal, multiphase computational fluid dynamics (CFD) model
was developed. A ladle with two bottom plugs was used in the study. Effects of plug separation angles (180° and
90°) and argon flow rate combinations (5/5 SCFM, 5/20 SCFM and 20/20 SCFM) were
investigated. The whole study can be divided into two parts: first, the flow
field, slag eye size and wall shear stress have been studied; second, inclusion
aggregation and removal in different ladles have been investigated. In the first
part, argon bubble breakup and coalescence has been considered. The slag eye
size was validated with plant measurement. When the flow rate increases, the size
of slag eye will increase while the wall shear stress increases as well. In the second part, a parametric study of
ladle design and argon flow rate on inclusion aggregation and removal has been
conducted. Turbulence shear collision shows the most dominant effect on
inclusion aggregation. The argon flow rate is positively related to inclusion
aggregation and removal. When the argon flow rate is fixed, a larger plug
separation angle shows higher inclusion aggregation and removal efficiency. </p><br>
|
287 |
Determining the viscous splash losses in the housing of a hydraulic motor through CFD-simulations : A master thesis in collaboration with Bosch-Rexroth in Mellansel ABLarsson, Tommy January 2017 (has links)
One possible way of solving future energy shortages is by the optimization of our current energy consumption. These optimizations must span all possible fields of consumption. In the mechanical field radial piston hydraulic motors may show some margin of improvement. The radial piston hydraulic motor is driven by a pressure difference in hydraulic oil. These motors are commonly found in heavy industrial equipments such as drills and conveyor belts. The advantage with these motors in comparison with electric motors is the high torque and ability to absorb shock loads that may cause damage to electrical motors. The effectiveness of these motors are determined both by the motor and by the drive system as a whole consisting of hydraulic pump driven by a electric motor, hydraulic hoses, motor and possible external coolers. If the effectiveness of the motor is low the whole drive system will be affected thus amplifying the total losses. The losses in the motor can be both mechanical and derived to the viscosity of the oil. One region in the motor where there are viscous losses are in the housing. The housing is filled with oil, that both aids in the cooling and acts as a lubricant for the motor. Pistons and rollers are some of the components found in the housing. These components rotates around the centre line axis while having a pulsating radial motion following a cam ring. This rotating and pulsating motion will push oil in and out of a volume between two consecutive pistons and rollers. This will create viscous losses and regions with a enhanced risk of cavitation. This study investigates if the flow of oil in the housing can be simulated accurately. The study also examine what are the main problems regarding the flow of oil in the housing and the factors affecting the size of the viscous losses. The study also examines the correlation between viscosity and viscous losses. Finally two different optimizations with the intention of decreasing the viscous losses are compared. The study found that the majority of the viscous losses in the housing can be derived to the flow of hydraulic oil in and out of the volume between two consecutive pistons and rollers. The oil will pass a sharp edge around the cylinder block and a narrow passage under the spacing between the cylinder rows in a two cam ring configured motor. This will create regions with a enhanced velocity and risk of cavitation. The stroke of the motor will greatly affect the effectiveness of the motor especially at a high rotational speed. The viscous losses will be transformed into internal energy, heat, thus increasing the temperature of the oil. A increased temperature will decrease the viscosity and the viscous losses. The viscous losses will vary with 17 % if the viscosity is varied between 20 and 100 cSt. The developed model is not sufficient to determine the viscous losses accurately since the geometry had to be considerably simplified, but can act as a way of comparing different optimizations of the motor. The viscous losses can be decreased with 25 % in the CCe motor at 150 rpm by milling material of the cylinder block between the piston holes. This is an expensive optimization and needs to be justified from a cost-benefit perspective.
|
288 |
Numerical simulations of giant vesicles in more complex Stokes flows and discretization considerations of the boundary element methodCharlie Lin (12043421) 18 April 2022 (has links)
<div>Quantifying the dynamics and rheology of soft biological suspensions such as red blood cells, vesicles, or capsules is paramount to many biomedical and computational applications. These systems are multiphase flows that can contain a diverse set of deformable cells and rigid bodies with complex wall geometries. For this thesis, we are performing several numerical simulations using boundary element methods (BEM) for biological suspensions in biomedically relevant conditions. Each simulation is devised to answer fundamental questions in modeling these systems.</div><div><br></div><div><br></div><div>Part of this thesis centers around the fluid mechanics of giant unilamellar vesicles (GUVs), fluid droplets surrounded by a phospholipid bilayer. GUVs are important to study because they mimic the dynamics of anuclear cells and are commonly used as a basis for artificial cells. The dynamics of vesicles in simple shear or extensional flows have been extensively studied. However the conditions seen in microfluidic devices or industrial processing are not always described by steady shear or extensional flows alone, and require more investigation. In our first study, we investigate the shape stability of osmotically deflated vesicles in a general linear flow (i.e., linear combinations of extensional and rotational flows). We modeled the vesicles as a droplet with an incompressible interface with a bending resistance. We simulated a range of flow types from purely shear to purely extensional at viscosity ratios ranging from 0.01 to 5.0 and reduced volumes (measured asphericity, higher is more spherical) from 0.60 to 0.70. The vesicle's viscosity ratio appears to play a minimal role in describing its shape and stability for many mixed flows, even in cases when significant flows are present in the vesicle interior. We find in these cases that the bending critical capillary number for shape instabilities collapse onto similar values if the capillary number is scaled by an effective extensional rate. These results contrast with droplet studies where both viscosity ratio and flow type have significant effects on breakup. Our simulations suggest that if the flow type is not close to pure shear flow, one can accurately quantify the shape and stability of vesicles using the results from an equiviscous vesicle in pure extension. Only when the flow type is nearly shear flow, do we start to see deviations in the observations discussed above. In this situation, the vesicle's stationary shape develops a shape deviation, which introduces a stabilizing effect and makes the critical capillary number depend on the viscosity ratio.</div><div><br></div><div><br></div><div>Continuing with our research on single vesicle dynamics, we have performed simulations and experiments on vesicles in large amplitude oscillatory extensional (LAOE) flows. By using LAOE we can probe the non-linear extension and compression of vesicles and how these types of deformation affect dilute suspension microstructure in time-dependent flows through contractions, expansions, or other complex geometries. Our numerical and experimental results for vesicles of reduced volumes from 0.80 to 0.95 have shown there to be three general dynamical regimes differentiated by the amount of deformation that occurs in each half cycle. We have termed the regimes: symmetrical, reorienting, and pulsating in reference to the type of deformation that occurs. We find the deformation of the quasispherical vesicles in the microfluidic experiments and boundary element simulations to be in quantitative agreement. The distinct dynamics observed in each regime result from a competition between the flow frequency, flow time scale, and membrane deformation timescale. Using the numerical results, we calculate the particle coefficient of stresslet and quantify the nonlinear relationship between average vesicle stress and strain rate. We additionally present some results on the dynamics of tubular vesicles in LAOE, showing how the experiments suggest the vesicles undergo a shape transformation over several strain rate cycles. Broadly, our work provides new information regarding the transient dynamics of vesicles in time-dependent flows that directly informs bulk suspension rheology.</div><div><br></div><div><br></div><div>Our most recent project deals with the accuracy of discretized double layer integrals for Stokes flow in the boundary element method.</div><div>In the fluid mechanics literature, the chosen parameterization, meshing procedure, and singularity handling are often selected arbitrarily or based on a convergence study where the number of elements is decreased until the relative error is sufficiently low.</div><div>A practical study on the importance of each of these parameters to the accurate calculation of physically relevant results, such as the particle stresslet, could alleviate some of the guesswork required. The analytical formulas for the eigenfunctions/eigenvalues of the double layer operator of an ellipsoidal particle in a quadratic flow were recently published<sup>1</sup>, providing an analytical basis for testing boundary element method discretization accuracy.</div><div>We use these solutions to examine the local and global errors produced by changing the interpolation order of the geometry and the double-layer density. The results show that the local errors can be significant even when the global errors are small, prompting additional study on the distribution of local errors. Interestingly, we find that increasing the interpolation orders for the geometry and the double layer density does not always guarantee smaller errors. Depending on the nature of the meshing near high curvature regions, the number of high aspect ratio elements, and the flatness of the particle geometry, a piecewise-constant density can exhibit lower errors than piecewise-linear density, and there can be little benefit from using curved triangular elements. Overall, this study provides practical insights on how to appropriately discretize and parameterize three-dimensional (3D) boundary-element simulations for elongated particles with prolate-like and oblate-like geometries.</div><div><br></div>
|
289 |
Modelling Considerations for a Transonic FanYu Ning Dai (12378877) 20 April 2022 (has links)
<p>The objective of this work is to provide a computational baseline for modelling the flow physics in the tip region of a transonic fan. A transonic fan was donated by Honeywell Aerospace to the Purdue University High-Speed Compressor Research Laboratory for the purposes of studying casing treatments and inlet distortion under the Office of Naval Research Power and Propulsion Program. The purpose of casing treatment is to extend the stall margin of the fan without being detrimental to fan efficiency. Hence, before an effective casing treatment can be designed, understanding the instabilities that lead to stall or surge and understanding the flow field near the rotor tip at different operating conditions is necessary. </p>
<p>The behavior of the flow field was studied at design speed using steady simulations for near stall, peak efficiency, and choke operating conditions. The details of the passage shock, tip leakage vortex, and the shock-vortex interaction were investigated. The passage shock moves forward in the rotor passage as the loading increases, until eventually becoming unstarted near stall. The tip leakage vortex convects from the rotor tip leading edge to the pressure side of the adjacent blade, and its trajectory becomes parallel to the rotor inlet plane as the loading increases. The shock-vortex interaction does not cause the tip leakage vortex to breakdown, although distortion of the shock front and diffusion of the tip leakage vortex is significant near stall.</p>
<p>To validate this computational model, steady simulations were used to conduct a grid convergence study. A single passage mesh of 8 million elements is sufficient to capture the flow qualitatively, but a mesh of at least 22 million elements is recommended to lower discretization error if quantitative details are important. A brief comparison of turbulence models is made, and the SST model was found to predict stronger radial flows than the BSL-EARSM and BSL-RSM models. However, the SST model still captures the flow features qualitatively, and the more complex models would be too costly for iterative design simulations.</p>
<p>The importance of unsteady effects was also considered for a point near peak efficiency. Near peak efficiency, the effect of shock oscillations near the rotor shroud are small. Compared to steady simulations, the unsteady simulation predicts a slightly stronger horseshoe vortex at the hub and a passage shock closer to the rotor leading edge. The tip leakage vortex trajectory appears to be the same between the steady and unsteady simulations.</p>
<p>The modelling decisions made in this research are currently only based on comparison between simulations. This model will be calibrated with experimental data in the future to provide a more accurate view of the flow physics inside this transonic fan.</p>
|
290 |
Numerical Study of Fire Spread Between Thin Parallel Samples in Microgravityvan den Akker, Enna Chia 23 May 2022 (has links)
No description available.
|
Page generated in 0.1116 seconds