291 |
CFD Analysis of Aspirator Region in a B&W Enhanced Once-Through Steam GeneratorSpontarelli, Adam Michael 07 June 2013 (has links)
This analysis calculates the velocity profile and recirculation ratio in the aspirator region of an enhanced once-through steam generator of the Babcock & Wilcox design. This information is important to the development of accurate RELAP5 models, steam generator level calculations, steam generator downcomer models, and flow induced vibration analyses. The OpenFOAM CFD software package was used to develop the three-dimensional model of the EOTSG aspirator region, perform the calculations, and post-process the results. Through a series of cases, each improving upon the modeling accuracy of the previous, insight is gained into the importance of various modeling considerations, as well as the thermal-hydraulic behavior in the steam generator downcomer. Modeling the tube support plates and tube nest is important for the accurate prediction of flow rates above and below the aspirator port, but has little affect on the aspirator region itself. Modeling the MFW nozzle has minimal influence on the incoming steam velocity, but does create a slight azimuthal asymmetry and alter the flow pattern in the downcomer, creating recirculation patterns important to inter-phase heat transfer. Through the development of a two-phase solution that couples the aspirated steam and liquid feedwater, it was found that the ratio of droplet surface area to volume plays the most important role in determining the rate of aspiration. Calculations of the velocity profile and recirculation ratio are compared against those of historical calculations, demonstrating the possibility that these parameters were previously underpredicted. Such a conclusion can only be confidently made once experimental data is made available to validate the results of this analysis. / Master of Science
|
292 |
Evaluation of an Incompressible Energy-Vorticity Turbulence Model for Fully Rough Pipe FlowHunsaker, Doug F. 01 December 2011 (has links)
Traditional methods of closing the Boussinesq-based Reynolds-averaged Navier-Stokes equations are considered, and suggestions for improving two-equation turbulence models are made. The traditional smooth-wall boundary conditions are shown to be incorrect, and the correct boundary conditions are provided along with sample solutions to traditional models. The correct boundary condition at a smooth wall for dissipation-based turbulence models is that which forces both the turbulent kinetic energy and its first derivative to zero. Foundations for an energy-vorticity model suggested by Phillips are presented along with the near-smooth-wall behavior of the model. These results show that at a perfectly smooth wall, the turbulent kinetic energy may approach the wall at a higher order than is generally accepted. The foundations of this model are used in the development of a k-λ model for fully rough pipe flow. Closure coefficients for the model are developed through gradient-based optimization techniques. Results of the model are compared to results from the Wilcox 1998 and 2006 k-ω models as well as four eddy-viscosity models. The results show that the Phillips k-λ model is much more accurate than other models for predicting the relationship between Reynolds number and friction factor for fully rough pipe flow. However, the velocity profiles resulting from the model deviate noticeably from the law of the wall.
|
293 |
Image Based Computational Hemodynamics for Non-Invasive and Patient-Specific Assessment of Arterial StenosisKhan, Md Monsurul Islam 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / While computed tomographic angiography (CTA) has emerged as a powerful noninvasive option that allows for direct visualization of arterial stenosis(AS), it cant assess the hemodynamic abnormality caused by an AS. Alternatively, trans-stenotic pressure gradient (TSPG) and fractional flow reserve (FFR) are well-validated hemodynamic indices to assess the ischemic severity of an AS. However, they have significant restriction in practice due to invasiveness and high cost. To fill the gap, a new computational modality, called InVascular has been developed for non-invasive quantification TSPG and/or FFR based on patient's CTA, aiming to quantify the hemodynamic abnormality of the stenosis and help to assess the therapeutic/surgical benefits of treatment for the patient. Such a new capability gives rise to a potential of computation aided diagnostics and therapeutics in a patient-specific environment for ASs, which is expected to contribute to precision planning for cardiovascular disease treatment. InVascular integrates a computational modeling of diseases arteries based on CTA and Doppler ultrasonography data, with cutting-edge Graphic Processing Unit (GPU) parallel-computing technology. Revolutionary fast computing speed enables noninvasive quantification of TSPG and/or FFR for an AS within a clinic permissible time frame. In this work, we focus on the implementation of inlet and outlet boundary condition (BC) based on physiological image date and and 3-element Windkessel model as well as lumped parameter network in volumetric lattice Boltzmann method. The application study in real human coronary and renal arterial system demonstrates the reliability of the in vivo pressure quantification through the comparisons of pressure waves between noninvasive computational and invasive measurement. In addition, parametrization of worsening renal arterial stenosis (RAS) and coronary arterial stenosis (CAS) characterized by volumetric lumen reduction (S) enables establishing the correlation between TSPG/FFR and S, from which the ischemic severity of the AS (mild, moderate, or severe) can be identified. In this study, we quantify TSPG and/or FFR for five patient cases with visualized stenosis in coronary and renal arteries and compare the non-invasive computational results with invasive measurement through catheterization. The ischemic severity of each AS is predicted. The results of this study demonstrate the reliability and clinical applicability of InVascular.
|
294 |
NUMERICAL MODELING OF SOIL INTERNAL EROSION MECHANISMTao, Hui 21 September 2018 (has links)
No description available.
|
295 |
Modeling Freeze/Thaw Behavior in Tanks for Selective Catalytic Reduction (SCR) ApplicationsRamesh, Vishal 30 September 2019 (has links)
No description available.
|
296 |
Verification, Validation, and Implementation of Numerical Methods and Models for OpenFOAM 2.0 for Incompressible FlowRobertson, Eric 14 August 2015 (has links)
A comprehensive survey of available numerical methods and models was performed on the open source computational fluid dynamics solver OpenFOAM version 2.0 for incompressible turbulent bluff body flows. Numerical methods are illuminated using source code for side-by-side comparison. For validation, the accuracy of flow predictions over a sphere in the subcritical regime and delta wing with sharp leading edge is assessed. Solutions show mostly good agreement with experimental data and data obtained from commercial software. A demonstration of the numerical implementation of a dynamic hybrid RANS/LES framework is also presented, including results from test studies.
|
297 |
An Assessment of State Equations of Air for Modeling a Blast Load SimulatorEmmanuelli, Gustavo 14 December 2018 (has links)
When an explosive detonates above ground, air is principally the only material involved in the transmission of shock waves that can result in damage. Hydrodynamic codes that simulate these explosions use equations of state (EOSs) for modeling the behavior of air at these high-pressure, high-velocity conditions. An investigation is made into the effect that the EOS selection for air has on the calculated overpressure-time waveforms of a blast event. Specifically, the ideal gas, Doan-Nickel, and SESAME EOSs in the SHAMRC code were used to reproduce experiments conducted at the Blast Load Simulator (BLS), a large-scale shock tube operated by the U.S. Army Engineer Research and Development Center, that consisted of subjecting an instrumented rigid box at three angles of orientation inside the BLS to a blast environment. Numerical comparisons were made against experimentally-derived confidence intervals using peak values and several error metrics, and an attempt was made to rank the EOS based on performance. Issues were noted with the duration of decay from maximum pressure to negative phase that resulted in a general underprediction of the integrated impulse regardless of EOS, while the largest errors were noted for gages on faces at 45 to 90 degrees from the initial flow direction. Although no significant differences were noticed in the pressure histories from different EOSs, the ideal gas consistently ranked last in terms of the error metrics considered and simultaneously required the least CPU hours. Similarly, the Doan-Nickel EOS slightly performed better than SESAME while requiring additional wallclock time. The study showed that the Doan-Nickel and SESAME EOSs can produce blast signatures with less errors and more matches in peak pressure and impulse than the ideal gas EOS at the expense of more computational requirements.
|
298 |
Numerical Study and Investigation of a Gurney Flap Supersonic NozzleEl Mellouki, Mohammed 14 December 2018 (has links)
Flow separation is a common fluid dynamics phenomenon that occurs within supersonic nozzles while operating at off-design pressures. Typically, off-design pressures result in a shock formation that leads to a non-uniformity of the exiting flow and creates flow separation and flow recirculation. So far, no effective solution has been presented to eliminate flow separation and increase the total performance of the nozzle. The purpose of this work is to investigate whether a Gurney flap may beneficially affect the exiting flow pattern. For a better understanding of the Gurney flap effect, this investigation used a supersonic nozzle geometry based on a previous study by Lechevalier [33]. Results from the tested cases showed a poor effect of the flap at high free-stream Mach number and lower pressure ratio. Simulations of different flap heights along with different parameters showed a slight increase of thrust.
|
299 |
The Effect of Two-Dimensional Wall Deformations on Hypersonic Boundary Layer DisturbancesSawaya, Jeremy David 14 December 2018 (has links)
Previous experimental and numerical studies showed that two-dimensional roughness elements can stabilize disturbances inside a hypersonic boundary layer, and eventually delay the transition onset. The objective of the thesis is to evaluate the response of disturbances propagating inside a hypersonic boundary layer to various two-dimensional surface deformations of different shapes. The proposed deformations consist of a backward step, forward step, a combination of backward and forward steps, two types of wavy surfaces, surface dips or surface humps. Disturbances inside of a Mach 5.92 flat-plate boundary layer are excited by pulsed or periodic wall blowing and suction at an upstream location. The numerical tools consist of the Navier-Stokes equations in curvilinear coordinates and a linear stability analysis tool. Results show that all types of surface deformations are able to reduce the amplitude of boundary layer disturbances to a certain degree. The amount of reduction in the disturbance energy is related to the type of pressure gradient created by the deformation, adverse or favorable.
|
300 |
Multidimensional Modeling of Condensing Two-Phase Ejector FlowColarossi, Michael F 01 January 2011 (has links) (PDF)
Condensing ejectors utilize the beneficial thermodynamics of condensation to produce an exiting static pressure that can be in excess of either entering static pressure. The phase change process is driven by both turbulent mixing and interphase heat transfer. Semi-empirical models can be used in conjunction with computational fluid dynamics (CFD) to gain some understanding of how condensing ejectors should be designed and operated.
The current work describes the construction of a multidimensional simulation capability built around an Eulerian pseudo-fluid approach. The transport equations for mass and momentum treat the two phases as a continuous mixture. The fluid is treated as being in a non-thermodynamic equilibrium state, and a modified form of the homogenous relaxation model (HRM) is employed. This model was originally intended for representing flash-boiling, but with suitable modification, the same ideas could be used for condensing flow. The computational fluid dynamics code is constructed using the open-source OpenFOAM library. Fluid properties are evaluated using the REFPROP database from NIST, which includes many common fluids and refrigerants.
The working fluids used are water and carbon dioxide. For ejector flow, simulations using carbon dioxide are more stable than with water. Using carbon dioxide as the working fluid, the results of the validation simulations show a pressure rise that is comparable to experimental data. It is also observed that the flow is near thermodynamic equilibrium in the diffuser for these cases, suggesting that turbulence effects present the greatest challenge in modeling these ejectors.
|
Page generated in 0.1204 seconds