Spelling suggestions: "subject:"concentric embraced steel frame""
1 |
Use of Cast Modular Components for Concentrically Braced Steel FramesFederico, Giovanni January 2012 (has links)
Cast modular components have been under development for earthquake resistant steel structures. These concepts take advantage of the versatility in geometry afforded with the casting process to create components specifically configured for ductile behavior. Two systems were developed as part of this dissertation research: (1) the Cast Modular Ductile Bracing system (CMDB); (2) the Floating Brace system (FB).The CMDB system makes use of cast components introduced at the ends and the center of the brace to produce a special bracing detail with reliable strength, stiffness and deformation capacity. The system takes advantage of the versatility in geometry offered by the casting process to create configurations that eliminate non-ductile failure modes in favor of stable inelastic deformation capacity. This thesis presents analytical research performed to determine the buckling strength and buckling direction of the bracing element based on the geometries of the cast components. Limiting geometries are determined for the cast components to control the buckling direction. Design formulas for buckling strength are proposed. The Floating Brace system is a new lateral bracing concept developed for steel special concentric braced frames. The concept uses a set of special plate details at the end of the brace to create a stiff, strong and ductile lateral bracing system. The plates are arranged such that some provide direct axial support for high initial stiffness and elimination of fatigue issues for daily service wind loads. The remaining plates are oriented transverse to the brace and thus provide ductile bending response for the rare earthquake event, in which the axial plates become sacrificial. The main bracing member and cast pieces remain elastic or nearly elastic. Thus, following the seismic event, the plates can be replaced. In this thesis, analytical studies using nonlinear finite element analysis are performed to determine the optimum: (a) relative strength of the end connection to the brace; and (b) ratio of strength between axial and transverse plates. Design equations are provided. Prototypes for each concept were developed. Castings were created. Large scale laboratory physical testing was performed as experimental verification (proof of concept) for the two systems.
|
2 |
Multi-hazard analysis of steel structures subjected to fire following earthquakeCovi, Patrick 30 July 2021 (has links)
Fires following earthquake (FFE) have historically produced enormous post-earthquake damage and losses in terms of lives, buildings and economic costs, like the San Francisco earthquake (1906), the Kobe earthquake (1995), the Turkey earthquake (2011), the Tohoku earthquake (2011) and the Christchurch earthquakes (2011). The structural fire performance can worsen significantly because the fire acts on a structure damaged by the seismic event. On these premises, the purpose of this work is the investigation of the experimental and numerical response of structural and non-structural components of steel structures subjected to fire following earthquake (FFE) to increase the knowledge and provide a robust framework for hybrid fire testing and hybrid fire following earthquake testing. A partitioned algorithm to test a real case study with substructuring techniques was developed. The framework is developed in MATLAB and it is also based on the implementation of nonlinear finite elements to model the effects of earthquake forces and post-earthquake effects such as fire and thermal loads on structures. These elements should be able to capture geometrical and mechanical non-linearities to deal with large displacements. Two numerical validation procedures of the partitioned algorithm simulating two virtual hybrid fire testing and one virtual hybrid seismic testing were carried out. Two sets of experimental tests in two different laboratories were performed to provide valuable data for the calibration and comparison of numerical finite element case studies reproducing the conditions used in the tests. Another goal of this thesis is to develop a fire following earthquake numerical framework based on a modified version of the OpenSees software and several scripts developed in MATLAB to perform probabilistic analyses of structures subjected to FFE. A new material class, namely SteelFFEThermal, was implemented to simulate the steel behaviour subjected to FFE events.
|
Page generated in 0.1091 seconds