• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 303
  • 31
  • 30
  • 26
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 14
  • 10
  • 6
  • 2
  • 2
  • Tagged with
  • 489
  • 489
  • 277
  • 88
  • 79
  • 77
  • 71
  • 53
  • 48
  • 48
  • 47
  • 44
  • 40
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Behavior of FRP-Reinforced Glulam-Concrete Composite Bridge Girders

Weaver, Craig Aaron January 2002 (has links) (PDF)
No description available.
272

2-D non-linear seismic analysis of one-storey eccentric precast concrete buildings

Parmar, Surinder Singh January 1987 (has links)
Investigations into the behaviour of precast buildings under earthquake loading have shown that the connections are likely to be the weakest link in a pre-cast structure, and the stability of the structure under earthquake loading depends upon the strength & stability of these connections. A 2-dimensional non-linear dynamic analysis of a one storey box-type pre-cast buildings is presented. The shear walls in the buildings are modelled by linear springs, the properties of which depend upon the connections connecting the rigid panels of the shear walls. To check the effectiveness of the NBCC code design, computer studies have been made on a box-type building statically designed for different eccentricities. The strength of the shear walls was calculated assuming that each panel was a cantilever fixed at the base with dowel bars providing the flexural steel. To make the building survive a major earthquake, we need dowel connections that can take 5mm to 6mm elongation which can be easily accommodated. Studies have also shown that under the action of an earthquake, the response of a highly unsymmetrical building will not be very different from that of a symmetric building as long as the building is properly designed using the NBCC code provisions for earthquake loading. It has also been shown that the NBCC code design eccentricity equation is somewhat conservative in calculating the design eccentricity and that a small change in the stiffness of walls perpendicular to the direction of earthquake has little effect on the response of the structures. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
273

GFRP Bars in Concrete toward Corrosion-free RC Structures: Bond Behavior, Characterization, and Long-term Durability Prediction

Yan, Fei January 2016 (has links)
Corrosion of steel reinforcements is the leading causes of malfunction or even failures of reinforced concrete (RC) structures nationwide and worldwide for many decades. This arises up to substantial economic burden on repairs and rehabilitations to maintain and extend their service life of those RC public projects. The inherent natures of glass fiber-reinforced polymers (GFRP) bars, from their superior corrosion resistance to high strength-to-weight ratio, have promoted their acceptance as a viable alternative for steel reinforcement in civil infrastructures. Comprehensive understanding of the bond between GFRP bars and concrete, in particular under in-service conditions or extremely severe events, enables scientists and engineers to provide their proper design, assessment and long-term predictions, and ultimately to implement them toward the corrosion-free concrete products. This research aims to develop a holistic framework through an experimental, analytical and numerical study to gain deep understanding of the bond mechanism, behavior, and its long-term durability under harsh environments. The bond behavior and failure modes of GFRP bar to concrete are investigated through the accelerated aging tests with various environmental conditions, including alkaline and/or saline solutions, freezing-thawing cycles. The damage evolution of the bond is formulated from Damage Mechanics, while detailed procedures using the Arrhenius law and time shift factor approach are developed to predict the long-term bond degradation over time. Besides, the machine learning techniques of the artificial neural network integrated with the genetic algorithm are used for bond strength prediction and anchorage reliability assessment. Clearly, test data allow further calibration and verification of the analytical models and the finite element simulation. Bond damage evolution using the secant modulus of the bond-slip curves could effectively evaluate the interface degradation against slip and further identify critical factors that affect the bond design and assessment under the limit states. Long-term prediction reveals that the moisture content and elevated temperature could impact the material degradation of GFRP bars, thereby affecting their service life. In addition, the new attempt of the Data-to-Information concept using the machine learning techniques could yield valuable insight into the bond strength prediction and anchorage reliability analysis for their applications in RC structures. / ND NASA EPCoR (FAR0023941) / ND NSF EPSCoR (FAR0022364) / US DOT (FAR0025913)
274

A cost study of an American precast panel system.

Moghadam, Hamid Reza. January 1978 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Civil Engineering, 1978 / Bibliography: p. 195-199. / M.S. / M.S. Massachusetts Institute of Technology, Department of Civil Engineering
275

An Experimental Investigation of Unbraced Reinforced Concrete Frames

Nejad, Nourollah Samiee 20 May 1977 (has links)
The main objective of this investigation is to study experimentally the behavior of rectangular reinforced concrete frames subject to a combination of low column loads, beam loads, and lateral load. The analytical tool used in this investigation is a computer program which is a generalized computational method for non linear force deformation relationship and secondary forces due to displacement of the joints during loading. In the experimental portion of this investigation, two rectangular frames, one design by the Ultimate Strength Design method and the other by a Limit Design method were prepared and tested to failure with short time loading. Physical tests indicate that frames under the action of low gravity loads and lateral load became unstable after the formation of two hinges in the beams.
276

Behavior of concrete under biaxial cyclic compression

Zisman, Joseph Gary January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 188-189. / by Joseph Gary Zisman. / M.S.
277

Prediction of seismic damage in reinforced concrete frames

Banon, Hooshang January 1980 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 180-184. / by Hooshang Banon. / Sc.D.
278

Simply supported, two way prestressed concrete slabs under uniform load.

Kemp, Gregory John January 1971 (has links)
No description available.
279

Impact loading of reinforced concrete model portal frames.

Dunn, William James. January 1971 (has links)
No description available.
280

Behaviour of structural concrete subjected to biaxial flexure and axial compression

Hsu, Cheng-tzu January 1974 (has links)
No description available.

Page generated in 0.1037 seconds