161 |
SUBCONCUSSIVE HEAD IMPACT EFFECT ON PLASMA EXPRESSION OF S100-BETA AND PINCH PROTEINS IN COLLEGIATE FOOTBALL PLAYERSKawata, Keisuke January 2016 (has links)
In this prospective longitudinal investigation of Division-I collegiate football players, the acute and longer-term effects of repetitive subconcussive impacts on plasma S100β and PINCH levels and concussion-related symptom score were examined. The first aim was to investigate the acute repetitive subconcussive impact effect by comparing the biomarker levels at pre and post full-gear practice, followed by examining the relationship of head impact magnitude and frequency of on acute increases in S100β and PINCH levels and symptom score. Hypotheses for the first aim were that there would be acute increases in plasma S100β and PINCH levels, but no change would be observed in symptom score. A significant relationship between subconcussive impact kinematics and acute changes in outcome measurements would be observed only in S100β. The second aim was to examine the longer-term effect of subconcussive effects on plasma S100β and PINCH levels as well as symptom score compared to the pre-season baseline. It was hypothesized that the players who sustained high frequency and magnitude of subconcussive impact would induce chronically high levels of plasma PINCH compared to the baseline. However, chronic effect would not be found in plasma S100β and symptom score. Independent variables were time (pre vs. post-practice), days (baseline, 1st Pads-OFF, 1st Pads-ON, 2nd Pads-ON, 3rd Pads-ON, 4th Pads-ON, and post-season), and group (higher vs. lower impact group). Dependent variables were the plasma expression of S100β and PINCH and symptom scores at each time point, pre-post differences in the plasma expression of S100β and PINCH and symptom scores, and head impact kinematics (frequency, sum of peak linear and rotational acceleration). This prospective observational study of 22 Division-I collegiate football players included pre-season baseline, pre-season practices [1 helmet-only and 4 full-gear], and post-season follow-up. Acute subconcussive effects were examined using the data from the first full-gear practice. Cumulative subconcussive effects were examined across the study duration (total 12 time points per player). Blood samples and self-reported symptom scores were obtained and blood biomarkers were assessed for pre-post practices and pre-post season. Plasma S100β expression level was assessed using a sandwich-based enzyme-linked immunosorbent assay. Plasma PINCH expression level was assessed using western blot analysis. An accelerometer-embedded mouth guard was employed to measure impact kinematics including number of impacts (hits), peak linear acceleration (PLA), and peak rotational acceleration (PRA). For examining cumulative effects, based on the previously established cut-off value of 173.5 g, players who were exposed average impact magnitudes below 173.5 g per practice were categorized into lower (n = 8) or greater than 173.5 g were categorized into higher (n = 14) impact groups. Data analysis consisted of descriptive and inferential statistics. Student’s t-tests were used to assess group differences in demographic and head impact kinematic data, acute effects using pre-post practice change in concussion-related symptom scores and biomarker levels, and longer-term effects using pre-post season change in concussion-related symptom scores and biomarker levels. Pearson r correlations were used to examine potential relationship between acute increase in outcome measures and head impact kinematics data. Two-way repeated measures ANOVAs were used to identify cumulative subconcussive effects over time in concussion-related symptoms scores and biomarker levels. If necessary, one-way ANOVA as a function of group was used to identify where cumulative effect began compared to the baseline, using Dunnett’s host-hoc correction. The alpha level was set at p < 0.05. A total of 721 head impacts were recorded from the 22 players during the 5 training camp practices. There were significant differences in head impact kinematics per practice between lower and higher impact groups [number of impacts per practice, 1.3 vs. 10.0 (p < .001); linear acceleration, 36.4 vs. 285.6 g (p < .001); rotational acceleration, 2,048.4 vs. 16,497.31 rad/s2 (p < .001), respectively]. There were no changes in self-reported concussion symptoms across the study duration. While there was no change in longer-term effect between pre-season baseline and post-season follow-up in plasma S100β level, robust and acute increase was observed in post-full gear practice (0.111 + 0.01 ng/ml) compared to pre-practice S100β level, (0.048 + 0.01 ng/ml; p < .0001). The acute increase in plasma S100β was significantly and positively correlated to the number of hits (r = 0.636, p = 0.001), sum of peak linear acceleration (r = 0.570, p = .006), and sum of peak rotational acceleration (r = 0.655, p = 0.001) sustained. For plasma PINCH level, there was a 4-fold increase at post-practice compared to that of pre-practice (p = .037), indicating the acute effect of subconcussive impacts. However, the acute increase in plasma PINCH level was independent from frequency and magnitude of impacts sustained, demonstrated by no statistically significant correlations with the number of hits (r = 0.222, p = .333), sum of peak linear acceleration (r = 0.289, p = .204), and sum of peak rotational acceleration (r = 0.297, p = .191). When players were categorized into the lower and higher impact groups and assessed across the 5 training-camp practices, consistently higher levels of plasma S100β and PINCH were found only in the higher impact group at post-practice compared to the baseline. However, plasma level of S100β and PINCH at pre-practice remained stable from the baseline, suggesting the absence of chronic effect from repetitive head impacts. When season-long effects on plasma S100β and PINCH levels were examined, 10 out of 16 players showed increase in plasma PINCH level at post-season compared to the baseline (p = .039) while no significant difference in plasma S100β level. Results from the current study suggest that subconcussive head impacts do not exert self-claimed concussion-related symptoms; however, blood biomarkers detected noticeable acute changes following repetitive subconcussive impacts. Plasma level of S100β protein can be a potential diagnostic measurement to track acute brain burden, and plasma level of PINCH protein may be reflective of the longer-term cumulative brain damage from repetitive head impacts. / Kinesiology
|
162 |
CLINICAL USEFULNESS OF OCULAR TESTS FOR DIAGNOSING CONCUSSIONSPhillips, Jacqueline Marie January 2016 (has links)
Dysfunctions of ocular motor and binocular vision are some of the most commonly observed problems in patients with severe traumatic brain injury. Secondarily, subjective complaints of compromised vision and ocular motor functions are also sometimes reported in mild traumatic brain injuries (mTBI). Simple ocular/vision assessments such as near point of convergence (NPC), the King-Devick Test (KDT), and stereoacuity can be performed to identify and assess these deficits, but their diagnostic accuracy has yet to be thoroughly investigated. The purpose of this study was to determine if differences exist in NPC, KDT, and stereoacuity test scores between concussed and control athletes, and to determine the diagnostic accuracy of these tests. A multicenter control group design was utilized. The independent variable was group (control vs. concussed). The dependent variables were the ocular test scores from the NPC, KDT, and stereoacuity tests. Participants were recruited from several collegiate athletic programs. In total 34 healthy, non-concussed controls (21 male, 13 female) aged 19 + 1.5 years and 19 concussions (11 male, 8 female) aged 20.42 + 1.5 years participated in the study. A concussion was operationally defined as a complex pathophysiological process affecting the brain, induced by biomechanical forces, that was diagnosed by a health care professional through the use of signs and symptoms scales, balance and neurocognitive testing. Data were analyzed using descriptive and inferential statistics. T-tests and chi-squares were performed to ensure there were no significant differences between groups on specific demographic or relevant prognostic variables (sport, sex, and concussion history). T-tests were employed to identify significant differences between groups on ocular test scores. Then clinical and statistical cutoffs for all three tests were determined. Based off of these cutoffs sensitivity, specificity, and likelihood ratios were determined for each assessment. Furthermore, receiver operating characteristic (ROC) curves were calculated to help determine the diagnostic accuracy of these assessments. The alpha level was set at p < .05 and the SPSS for Windows, Version 21.0, statistical program (IBM, Inc., Armonk, NY) was used for all data analysis. Significant differences were found between groups for all three ocular assessments. NPC demonstrated a statistical cutoff of 5.5 cm, which provided a sensitivity of 79% and specificity of 76% and an AUC of 0.827. For the KDT, a statistical cutoff time of 49.5s demonstrated a sensitivity of 58% and specificity of 72% with an AUC of 0.658. Lastly, for stereoacuity a statistical cutoff point of 28.50 arc sec was found which produced a sensitivity of 65% and specificity of 54% with a maximum AUC of 0.706. All three tests demonstrated their potential to positively contribute to the diagnosis of a concussion. / Kinesiology
|
163 |
Temporal Changes in Depression and Neurocognitive Performance in Collegiate Student-Athletes: A Repeated Measures Evaluation Pre- and Post-Concussion InjuryMcGuire, Lindsey C. January 2014 (has links)
The study had three purposes: 1.) examine the temporal change in depression symptoms among collegiate student-athletes throughout a fall athletic season, 2.) identify the course of depression in student-athletes pre- and post-concussion injury, and 3.) examine the relationship between neurocognitive performance and depression at baseline and post-concussion injury. Depression symptoms were measured every two weeks, beginning at pre-season baseline, until the end of the athletic season using the Patient Health Questionnaire-9 (PHQ-9). The Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) exam was used to measure neurocognitive performance at baseline and post-concussion. A total of 593 (92.1%) participants were used in the depression analyses. On average, nearly a third of the athletes endorsed minimal levels of depression symptoms across the fall athletic season. Across the entire athletic season, 3.7% of student-athletes had their PHQ-9s red-flag for moderate to severe depression symptoms. Significant differences were found in depression symptoms across time, and by sex. At pre-season baseline, higher depression symptoms were significantly correlated with decreased scores on Visual Memory, Visual Motor Speed, and Total Symptom Score, and increased Reaction Time. A total of 27 concussed athletes were used in the concussion and depression analyses. No significant differences were found between depression symptoms pre-concussion and any of the post-concussion time intervals. At 1 week post-concussion, elevated depression symptoms were significantly correlated with slower Reaction Time and higher Total Symptom Scores at 1 week post-concussion, and increased Impulse Control and Total Symptom Scores at 3-5 months post-concussion. These results demonstrate the need to evaluate depression symptoms at pre-season baseline, across the athletic season, and post-concussion in collegiate student-athletes. / Kinesiology
|
164 |
Event-Related Potentials in Concussion Detection and RecoveryRuiter, Kyle I. January 2019 (has links)
Concussion, defined as a functional injury with complex symptomatology, affects millions annually and has been classified as a serious public health concern. Clinical tools currently available for concussion assessment fail to objectively measure cognitive function and thus, are inadequate for proper evaluation of the cognitive dysfunctions associated with the injury. As a result, investigation into the neurological consequences associated with concussion has become a prominent focus in neuroscience research. Traditionally, neuroimaging methods have been used primarily on concussion detection, while behavioural and neuropsychological assessments have been used for both concussion detection and cognitive-performance tracking. However, to date, minimal work has explored the use of neuroimaging to track the consequences of concussion at the neurophysiological level. Accordingly, the present thesis sought to investigate the clinical applicability of electroencephalography (EEG) as an effective neuroimaging tool capable of concussion detection, as well as its ability to objectively track neurophysiological changes over time. Event-related potentials (ERPs) were used to assess specific functions, or more accurately, dysfunctions of select cognitive processes as reflected by electrophysiological changes in the brain. Specifically, the Mismatch Negativity (MMN), N2b, and P300 were investigated to evaluate memory, attention, and executive control in concussed populations. The results of this thesis demonstrated alterations in each of the aforementioned ERPs, signifying cognitive dysfunctions linked to neurophysiological abnormalities in concussed populations. Of particular importance, Chapter 2 revealed the first instance of MMN abnormalities in a concussed population, Chapter 3 was the first to assess concussed adolescents at the acute stage of their injury, and Chapter 4 demonstrates the potential of ERPs to track neurophysiological changes from the acute to post-acute stages of the injury. Ultimately, the findings presented in this dissertation support the clinical viability of using ERPs to not only detect cognitive dysfunctions associated with concussion, but also to objectively track neurophysiological changes on the path to recovery. / Dissertation / Doctor of Philosophy (PhD)
|
165 |
Uncovering astrocyte roles at the blood brain barrier in the healthy and concussed brainHeithoff, Benjamin Patrick 14 June 2021 (has links)
The blood-brain barrier (BBB) is regulated by factors that can be secreted by multiple cell types, including astrocytes, that maintain the BBB in health and promote repair after injury. However, astrocyte contributions to the BBB are largely assumed from transplantation studies in which astrocyte progenitor grafts conferred BBB-like properties to tissues that normally lack a BBB. To determine if astrocytes contribute an essential and non-redundant function in maintaining the healthy BBB, I genetically ablated a small number of astrocytes using a conditional, tamoxifen-inducible mouse model. Within 2 hours after induction, I observed sparse astrocyte death in the cortex and leakage of the small molecule Cadaverine and large plasma protein fibrinogen, which are normally contained by a functional BBB. Vessels within regions of ablated astrocytes showed reduced expression of the tight junction protein zonula occludens-1, indicating impairment of the physical barrier formed between endothelial cells. Cadaverine leakage persisted for weeks, a feature I also found in mice after mild concussive traumatic brain injury (cTBI), thus highlighting the potential for revealing astrocyte roles in post-injury repair. Unlike the genetic ablation model, astrocytes within Cadaverine leakage areas did not undergo cell death after cTBI and instead downregulated homeostatic proteins. Our preliminary results show this atypical phenotype appearing 10 minutes after cTBI, along with severe vessel rupture, BBB leakage, and disruption of endfoot and basement membrane proteins. This damage persists for months, suggesting that the BBB fails to repair in these areas. Our results provide direct in-vivo evidence for essential astrocyte roles in the maintenance of the healthy BBB. Maintenance and/or repair fail after mild concussive cTBI, possibly contributing to irreversible progression to neurodegenerative diseases. / Doctor of Philosophy / The blood-brain barrier (BBB) is a unique property of blood vessels in the Central Nervous System (CNS) different from other vessels in the body. The physically tight barrier of the BBB is formed by tight junction proteins between endothelial cells and limits paracellular diffusion. The metabolic barrier is formed by concentrations of glucose transporters that promote transport of essential nutrients to the brain. Lastly, a transport barrier limits the passage of molecules and cells across the endothelial cell layer, preventing the entry of non-essential molecules, including pathogens and immune cells found in the blood. The BBB is thought to be induced and maintained by factors secreted by nearby cells in the brain. Among these cells are astrocytes, a type of glial cell that nearly completely cover blood vessels with their processes called endfeet. This strategic positioning led the field to assume that astrocytes are responsible for generating the unique properties of the BBB. Yet little direct evidence exists to support this conclusion, and newer evidence calls into question if astrocytes are even needed for BBB functions. To test this, I used a genetic mouse model to induce death of small numbers of astrocytes in adult mice. This caused leakage of blood contents of various sizes into the brain. In addition, the tight junction proteins responsible for forming the physical BBB were disrupted. These effects remained for weeks, a feature I also found after mild concussive traumatic brain injury (cTBI). This suggests that astrocytes may have an additional function in repairing the injured BBB. Our results demonstrate an essential role for astrocytes in the maintenance of the healthy adult BBB. Maintenance and/or its repair fail after cTBI, possibly contributing to the cascade into irreversible progression to neurodegenerative diseases.
|
166 |
Head Acceleration Experienced by Man: Exposure, Tolerance, and ApplicationsRowson, Steven 03 May 2011 (has links)
Between 1.6 and 3.8 million sports-related concussions are sustained by persons living in the United States annually. While sports-related concussion was once considered to only result in immediate neurocognitive impairment and symptoms that are transient in nature, recent research has correlated long-term neurodegenerative effects with a history of sports-related concussion. Increased awareness and current media attention have contributed to concussions becoming a primary health concern. Although much research has been performed investigating the biomechanics of concussion, little is understood about the biomechanics that cause concussion in humans. The research presented in this dissertation investigates human tolerance to head acceleration using methods that pair biomechanical data collected from human volunteers with clinical data. Head impact exposure and injury risk are quantified and presented.
In contrast to the publicly available data on the safety of automobiles, consumers have no analytical mechanism to evaluate the protective performance of football helmets. With this in mind, the Summation of Tests for the Analysis of Risk (STAR) evaluation system was developed to evaluate the impact performance of footballs helmets and provide consumers with information about helmet safety. The STAR evaluation system was designed using real world data that relate impact exposure to injury risk. / Ph. D.
|
167 |
Evaluation and Application of Brain Injury Criteria to Improve Protective Headgear DesignRowson, Bethany M. 01 September 2016 (has links)
As many as 3.8 million sports-related traumatic brain injuries (TBIs) occur each year, nearly all of which are mild or concussive. These injuries are especially concerning given recent evidence that repeated concussions can lead to long-term neurodegenerative processes. One way of reducing the number of injuries is through improvements in protective equipment design. Safety standards and relative performance ratings have led to advancements in helmet design that have reduced severe injuries and fatalities in sports as well as concussive injuries. These standards and evaluation methods frequently use laboratory methods and brain injury criteria that have been developed through decades of research dedicated to determining the human tolerance to brain injury. It is necessary to determine which methods are the most appropriate for evaluating the performance of helmets and other protective equipment. Therefore, the aims of this research were to evaluate the use of different brain injury criteria and apply them to laboratory evaluation of helmets. These aims were achieved through evaluating the predictive capability of different brain injury criteria and comparing laboratory impact systems commonly used to evaluate helmet performance. Laboratory methods were developed to evaluate the relative performance of hockey helmets given the high rate of concussions associated with the sport. The implementation of these methods provided previously unavailable data on the relative risk of concussion associated with different hockey helmet models. / Ph. D.
|
168 |
The Etiology of Impact Related Concussion for Catchers and Umpires in BaseballBeyer, Jeffrey Andrew 01 June 2011 (has links)
The information presented herein attempts to quantify the conditions surrounding concussive impacts from foul tips to the masks of catchers and umpires in baseball. Media reports of such occasions were researched on video and pitch speed data from the Pitch F/X system recorded to suggest speeds and locations at which impacts occur. To evaluate mask performance, a pneumatic-wheel, electric-motor driven pitching machine was utilized to shoot baseballs at the instrumented head of a Hybrid III dummy. Head accelerations were calculated from a 3-2-2-2 accelerometer array to allow for comparisons of linear and angular kinematics. 6 common masks (2-piece traditional-style and 1-piece hockey-style) were tested at 7 locations at 60 mph to determine the severity of each location. The center-eyebrow and chin locations were further tested at 84 mph. Speed and location data were used to evaluate a large sample of 25 masks to explore possible performance differences between manufacturer models, mask types and cage styles. The results of this study showed no significant difference between hockey-style and traditional-style mask performance. Titanium caged masks, although lighter than their steel counterparts, experienced higher linear accelerations. However, all masks experienced linear and angular accelerations well below commonly accepted injury thresholds. Yet, concussive injury has still occurred in the players and umpires that wear these masks. The work presented here can be used to help better understand these thresholds and influence the design, construction and evaluation of a new generation of masks that decrease the risk of concussions to the wearer. / Master of Science
|
169 |
Development and Implementation of Laboratory Test Methods for the Evaluation of Wearable Head Impact SensorsTyson, Abigail M. 08 January 2016 (has links)
With a rise in wearable sensor technology and the desire to investigate head impacts in previously unstudied groups, wearable head impact sensors have reached nation-wide popularity for their promising benefits to consumers and researchers. However, there are risks in relying on such technology before proper validation of its performance has been completed. Preliminary tests have found that current sensors vary widely in performance. The objective of this work was to develop and implement a test method for evaluation of wearable sensors in an ideal laboratory environment. A custom pendulum was used to impact a NOCSAE headform mounted on a Hybrid III neck. Sensors were tested under helmeted and unhelmeted conditions, according to their prescribed use. The headform was impacted at four locations, each at four impact energies ranging from 25 g to 100 g. Peak and time series headform kinematics output by each sensor were compared to accelerometers and angular rate sensors inside the headform. Average and standard deviations of peak sensor error and normalized RMS error were evaluated at each test condition to describe sensor performance. Requirements were set in the slope and coefficient of determination from linear regressions constrained through the origin to describe adequate sensor performance under ideal conditions. Sensors that met the requirement in at least one kinematic variable will be further evaluated in more realistic on-field and cadaver tests. The combination of all testing phases will be used to provide an overall sensor evaluation for both researchers and consumers. / Master of Science
|
170 |
Viewing Contact Sports as a Safeguarding IssueWalker, Daniel 05 May 2023 (has links)
Yes / ... Sustaining a sport-related concussion (SRC) has been
associated with negative consequences to emotion and cognition
in recent years,4,5 and head impacts are no different.1
Moreover, there is a consistent link reported with neurodegenerative
diseases such as motor-neuron disease, Parkinson’s disease, and
dementia. Although this is well-known within the scientific
community, and becoming so in the general population, we still
place children at risk. Promoting attitude change toward SRC and
head impacts in sport is difficult enough with adults as many are
accustomed to the way their contact sports are played and
spectated. However, a redeeming feature for many researchers is
that the evidence is there, and the rhetoric is being discussed in
the mainstream media across the world.
|
Page generated in 0.084 seconds