1 |
Highly conductive stretchable electrically conductive composites for electronic and radio frequency devicesAgar, Joshua Carl 05 July 2011 (has links)
The electronics industry is shifting its emphasis from reducing transistor size and operational frequency to increasing device integration, reducing form factor and increasing the interface of electronics with their surroundings. This new emphasis has created increased demands on the electronic package. To accomplish the goals to increase device integration and interfaces will undoubtedly require new materials with increased functionality both electrically and mechanically.
This thesis focuses on developing new interconnect and printable conductive materials capable of providing power, ground and signal transmission with enhanced electrical performance and mechanical flexibility and robustness. More specifically, we develop: 1.) A new understanding of the conduction mechanism in electrically conductive composites (ECC). 2.) Develop highly conductive stretchable silicone ECC (S-ECC) via in-situ nanoparticle formation and sintering. 3.) Fabricate and test stretchable radio frequency devices based on S-ECC. 4.) Develop techniques and processes necessary to fabricate a stretchable package for stretchable electronic and radio frequency devices.
In this thesis we provide convincing evidence that conduction in ECC occurs predominantly through secondary charge transport mechanism (tunneling, hopping). Furthermore, we develop a stretchable silicone-based ECC which, through the incorporation of a special additive, can form and sinter nanoparticles on the surface of the metallic conductive fillers. This sintering process decreases the contact resistance and enhances conductivity of the composite. The conductive composite developed has the best reported conductivity, stretchability and reliability. Using this S-ECC we fabricate a stretchable microstrip line with good performance up to 6 GHz and a stretchable antenna with good return loss and bandwidth.
The work presented provides a foundation to create high performance stretchable electronic packages and radio frequency devices for curvilinear spaces. Future development of these technologies will enable the fabrication of ultra-low stress large area interconnects, reconfigurable antennas and other electronic and RF devices where the ability to flex and stretch provides additional functionality impossible using conventional rigid electronics.
|
2 |
Designing Multifunctional Material Systems for Soft Robotic ComponentsRaymond Adam Bilodeau (8787839) 01 May 2020 (has links)
<p>By using flexible and stretchable materials in place of
fixed components, soft robots can materially adapt or change to their
environment, providing built-in safeties for robotic operation around humans or
fragile, delicate objects. And yet, building a robot out of only soft and
flexible materials can be a significant challenge depending on the tasks that
the robot needs to perform, for example if the robot were to need to exert higher
forces (even temporarily) or self-report its current state (as it deforms
unexpectedly around external objects). Thus, the appeal of multifunctional
materials for soft robots, wherein the materials used to build the body of the
robot also provide actuation, sensing, or even simply electrical connections,
all while maintaining the original vision of environmental adaptability or safe
interactions. Multifunctional material systems are explored throughout the body
of this dissertation in three ways: (1) Sensor integration into high strain
actuators for state estimation and closed-loop control. (2) Simplified control
of multifunctional material systems by enabling multiple functions through a
single input stimulus (<i>i.e.</i>, only requiring one source of input power).
(3) Presenting a solution for the open challenge of controlling both well
established and newly developed thermally-responsive soft robotic materials
through an on-body, high strain, uniform, Joule-heating energy source. Notably,
these explorations are not isolated from each other as, for example, work
towards creating a new material for thermal control also facilitated embedded
sensory feedback. The work presented in this dissertation paves a way forward
for multifunctional material integration, towards the end-goal of
full-functioning soft robots, as well as (more broadly) design methodologies
for other safety-forward or adaptability-forward technologies.</p>
|
3 |
TEMPERATURE AND GAS SENSING CHARACTERISTICS OF GRAPHITE/POLYMER (PEO) BASED COMPOSITE STRUCTURESBHARGAVA, SUMEET 02 October 2006 (has links)
No description available.
|
4 |
Etude de dispersions de nanotubes de carbone par des polymères pour l’élaboration de composites conducteurs et structurésSaint-Aubin, Karell 04 May 2010 (has links)
Cette thèse rapporte l’étude de dispersions de nanotubes de carbone par des polymères, la mise en forme de films composites et l’étude de leurs propriétés mécaniques ou de conduction électrique. La première partie est centrée autour de l’utilisation de l’acide poly-acrylique (PAA), qui se révèle un excellent agent dispersant des nanotubes dans l’eau. Une étude des interactions entre le polyélectrolyte et les nanotubes en fonction du pH est réalisée afin d’identifier les conditions de dispersion optimales. La réalisation de composites pour de potentielles applications dans les encres et peintures conductrices révèle qu’un contrôle suffisamment fin de l’adsorption du PAA et de la stabilité de la dispersion permet l’obtention de films à la fois homogènes et conducteurs électriques. La seconde partie de ce travail concerne l’utilisation d’un copolymère à blocs, le SBM, possédant des propriétés remarquables d’auto-organisation pour la réalisation de composites par voie solvant à base de nanotubes. L’originalité du système réside dans le fait que le SBM est à la fois agent dispersant des nanotubes mais également matrice structurante. Ce travail montre que la structure adoptée par le copolymère, qui dépend beaucoup du solvant employé, influence directement les propriétés mécaniques du matériau. De plus, l’addition de nanotubes améliore sensiblement les performances du composite. / This thesis deals with the study of carbon nanotube dispersions by polymers, the processing of composite films and the study of their mechanical and electrical properties. The first part of the work focuses on the use of poly(acrylic) acid (PAA), which proves to be an excellent dispersing agent in water. A study of the interactions between the PAA and the nanotubes is realised, tuned by the pH conditions. The fabrication of composite films, for future applications in the field of conductive inks and paints, shows that a fine control of the PAA adsorption and the dispersion stability allows the formation of homogeneous and conductive composites. In a second part, nanotube composites are elaborated from a block copolymer, the SBM, well-known for its remarkable self organization properties. Interestingly, the copolymer is at the same time the nanotube dispersing agent in the solvent and the structuring matrix of the final composite. This thesis shows that the copolymer structure, which strongly depends on the solvent used, influences the mechanical properties of composite films, and that the addition of nanotubes noticeably improves the performances.
|
5 |
Elektricky vodivé kompozity na bázi druhotných surovin / Electrically conductive composites based on secondary raw materialsBaránek, Šimon January 2021 (has links)
Electroconductive composites are modern materials that are commonly used in many industries such as the construction industry among others. For example these materials can be useful as sensors for monitoring changes in constructions. The aim of this thesis is the research of electrically conductive silicate composite based on secondary raw materials. The design of this composite is based on the development of its own mixtures and experimental verification of the effect of the structure. The introduction part consists of a detailed analysis of 15 materials. Samples of the 5 fine and 2 coarse electrically conductive fillers were tested. Composite with filler Condufit C4 was selected as representative for type of fine fillers. Composite with filler Supragraphite C300 was selected as representative for type of coarse fillers. The selection of the composites was based on the impedance of the fabricated composites with these fillers. Subsequently, the individual components of the primary mixture were substituted. The cement was replaced by high-temperature fly ash in the amount of 20, 30, and 40 %, the aggregate of a similar fraction was replaced by steel sawdust, and the primary electrically conductive fillers were replaced by secondary ones in the amount of 30 and 50 %. All proposed replacements reduced the impedance of the composite. The most effective replacement for impedance reduction was replacement with waste graphite (up to 92 % reduction), which also slightly improved the mechanical properties of the composite. The result of this thesis is an optimized electrically conductive composite based on secondary raw materials with a fine type of filler with 30 % replacement by waste graphite "odpad vysavač"which achieves an impedance of 5 ohms. The partial goal of this thesis is a verification of the influence of moisture on the impedance of composites. Results are significantly affected by moisture when using the coarse type of filler, when using the fine type are not.
|
Page generated in 0.0677 seconds