• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding plant water relations and root biomechanics for hydro-mechanical reinforcement of slopes

Boldrin, David January 2018 (has links)
Vegetation stabilises slopes via both mechanical reinforcement (through root anchorage) and hydrologic reinforcement (through transpiration-induced soil matric suction). However, relatively little is known about the effectiveness of different plant species in stabilising soil slopes via the two reinforcing mechanisms, and so decisions on species selection are seldom made with optimisation of slope reinforcement in mind. In this thesis, a comprehensive testing programme including laboratory, glasshouse and field experiments is designed and implemented, with the aim to quantify and investigate the transpiration-induced hydrologic reinforcement and root biomechanical properties during the early plant establishment of selected woody species, widespread under European temperate climate. Ten species native to Europe (Buxus sempervirens L.; Corylus avellana L.; Crataegus monogyna Jacq.; Cytisus scoparius (L.) Link; Euonymus europaeus L.; Ilex aquifolium L.; Ligustrum vulgare L.; Prunus spinosa L.; Salix viminalis L. and Ulex europaeus L.) were investigated in a glasshouse experiment to understand any relation of transpiration induced hydrologic reinforcement with above- and below-ground plant traits (e.g. specific leaf area; root length density). The ten species showed large differences in terms of water uptake, which translated to significant differences in matric suction and soil strength. Species with the largest water uptake increased soil strength more than ten times that in fallow soil. Specific leaf area, root length density and root:shoot ratio were best correlated with the induced hydrologic reinforcement provided by the ten tested species. These results supplied essential species information for designing the subsequent experiments. Based on the previous findings, three representative yet contrasting species (Corylus avellana, Ilex aquifolim and Ulex europaeus) were selected and planted in 1-m soil columns to investigate the effects of season (i.e. summer vs winter), plant functional type (i.e. deciduous vs evergreen) and soil depth on the magnitude and distribution of transpiration-induced matric suction and the associated soil strength gain. Evergreens could slowly induce matric suction and hence potentially stabilise soil during winter. However, there were very large differences between the tested evergreens (I. aquifolium and U. europaeus). Indeed, only U. europaeus provided matric suction and soil strength gain along the entire depth-profile because of its fast growth (above- and below-ground). A full-scale field experiment was also performed to provide ground-truth data on the extent of variation in hydrologic reinforcement among species, hence validating the glasshouse results obtained in the first two studies. The two-year field experiment yielded a similar ranking to the glasshouse experiments in terms of the species ability to rapidly develop matric suction and soil strength. In particular, the evergreen U. europaeus induced large matric suction (e.g. ≥ 70 kPa at 0.5 m depth) even during the early establishment period. Furthermore, this field research highlighted the greater (compared to other tested species) temporal effectiveness of U. europaeus, which was able to provide matric suction on the slope from early spring to late autumn. The greater ability of U. europaeus in inducing and preserving matric suction can be attributed to its large water uptake, which supports its fast growth, as well as to the notable interception loss provided by its canopy. Therefore, U. europaeus can represent a very suitable species for slope stabilisation under the temperate climate context. Root biomechanical properties, including tensile strength and Young's modulus, were investigated in the laboratory for the same ten species. The results highlighted a large variability in the tensile strength-diameter relations during the early stage establishment of plants, especially in thin roots with diameter ranging from 0.4 to 2.0 mm. The root tensile strength-diameter relationships highlighted three different trends. The common negative power relation between root tensile strength and diameter existed only for two out of the ten tested species (i.e. E. europaeus and U. europaeus). B. sempervirens, I. aquifolium and P. spinosa showed a slight increase in tensile strength with increasing root diameter. C. avellana, C. monogyna and L. vulgare consistently showed an initial increase in root tensile strength with increasing root diameter, reaching peak strength between 1.0 and 2.5 mm diameter. Beyond the peak strength, a reduction in strength was observed with increasing root dimeter. These bimodal trends might be partially explained by the differences in the development stage of root primary and secondary structures. Root moisture content can be one of the factors inducing the observed large variability in root tensile strength. Therefore, the last part of this thesis assessed the effects of root drying on the root biomechanical properties of U. europaeus. Root strength and stiffness showed an abrupt increase when root water content dropped below 0.5 g g-1. The strength increase can be explained by the reduction in root diameter and by changes in root properties induced by the root water potential drop. Moreover, root water loss and root strength gain were diameter-dependent because of the relatively larger evaporative surface per volume of thin roots.
2

Compósitos de PVC reforçados com fibra de vidro: uso de técnicas de processamento convencionais da indústria brasileira. / Glass fiber reinforced PVC composites: use of conventional processing techniques currently employed in the Brazilian industry.

Murilo de Barros Feltran 15 February 2008 (has links)
Este trabalho apresenta o estudo da incorporação de fibra de vidro curta em composto rígido de poli(cloreto de vinila) - PVC - por meio de equipamentos e técnicas de processamento convencionais da indústria brasileira. Foram avaliadas as influências de: a) tamanho de fibra de vidro (tipo E), b) dosagem de fibra de vidro, c) dosagem de dióxido de titânio (TiO2) e d) a temperatura de processamento nas propriedades físicas, térmicas, mecânicas e na adesão entre matriz polimérica e fibra de vidro (analisada por Microscopia Eletrônica de Varredura). O custo-benefício dos compósitos foi calculado por meio de Índices de Mérito para os modos de carregamento mecânico encontrados nos tubos pressurizados para água fria (Cilindro com Pressão Interna) e perfis rígidos utilizados em construção civil (Barra em Flexão), dado o grande uso de PVC nestas aplicações. Entre os resultados obtidos, destaca-se o aumento de 45% no módulo de elasticidade para os compósitos com 20% de fibra de vidro moída que, para algumas aplicações, pode apresentar uma relação custo-benefício bastante favorável. / This work presents the impact of the short glass fiber incorporation in rigid PVC compound through conventional processing techniques currently employed in the Brazilian industry. It were studied the influences of a) glass fiber geometry (E type), b) glass fiber content, c) titanium dioxide content and d) processing temperature in the physical, mechanical and thermal properties. The adhesion conditions between polymeric matrix and glass fiber was analyzed by scanning electron microscopy (SEM). Cost-benefit relation of composites was evaluated using materials index technique for mechanical conditions found in pressurized water pipes (cylinder with internal pressure) and in building construction profiles (beam loaded in bending). The results attained suggested that, in some cases, the mechanical properties enhancement (such as the increase of 45% in the modulus of elasticity for composites containing 20% of glass fiber) and the processing techniques required to produce it can present an interesting cost-benefit relation.
3

Compósitos de PVC reforçados com fibra de vidro: uso de técnicas de processamento convencionais da indústria brasileira. / Glass fiber reinforced PVC composites: use of conventional processing techniques currently employed in the Brazilian industry.

Feltran, Murilo de Barros 15 February 2008 (has links)
Este trabalho apresenta o estudo da incorporação de fibra de vidro curta em composto rígido de poli(cloreto de vinila) - PVC - por meio de equipamentos e técnicas de processamento convencionais da indústria brasileira. Foram avaliadas as influências de: a) tamanho de fibra de vidro (tipo E), b) dosagem de fibra de vidro, c) dosagem de dióxido de titânio (TiO2) e d) a temperatura de processamento nas propriedades físicas, térmicas, mecânicas e na adesão entre matriz polimérica e fibra de vidro (analisada por Microscopia Eletrônica de Varredura). O custo-benefício dos compósitos foi calculado por meio de Índices de Mérito para os modos de carregamento mecânico encontrados nos tubos pressurizados para água fria (Cilindro com Pressão Interna) e perfis rígidos utilizados em construção civil (Barra em Flexão), dado o grande uso de PVC nestas aplicações. Entre os resultados obtidos, destaca-se o aumento de 45% no módulo de elasticidade para os compósitos com 20% de fibra de vidro moída que, para algumas aplicações, pode apresentar uma relação custo-benefício bastante favorável. / This work presents the impact of the short glass fiber incorporation in rigid PVC compound through conventional processing techniques currently employed in the Brazilian industry. It were studied the influences of a) glass fiber geometry (E type), b) glass fiber content, c) titanium dioxide content and d) processing temperature in the physical, mechanical and thermal properties. The adhesion conditions between polymeric matrix and glass fiber was analyzed by scanning electron microscopy (SEM). Cost-benefit relation of composites was evaluated using materials index technique for mechanical conditions found in pressurized water pipes (cylinder with internal pressure) and in building construction profiles (beam loaded in bending). The results attained suggested that, in some cases, the mechanical properties enhancement (such as the increase of 45% in the modulus of elasticity for composites containing 20% of glass fiber) and the processing techniques required to produce it can present an interesting cost-benefit relation.
4

Renforcement de copolyester thermoplastique par extrusion réactive / Reinforcement of thermoplastic copolyester by reactive extrusion

Lucas, Antoine 01 February 2017 (has links)
L'objet de cette thèse a été le renforcement d'un copolyester thermoplastique par extrusion réactive au sein d'une extrudeuse bi-vis. L'objectif a été de faire réagir différents additifs avec les groupements réactifs du copolyester afin de créer et d'identifier de nouvelles structures moléculaires. Différentes stratégies ont été étudiées : l'ajout de polyetheramines de différentes masses molaires et différentes fonctionnalités, l'ajout de résines phénoliques dans différentes conditions, et le développement in situ lors de l'extrusion d'une phase thermodurcissable au sein de la matrice thermoplastique par des réactions époxy-amines / The goal of this thesis work was to reinforce a thermoplastic copolyester by reactive extrusion in a twin-screw extruder. The objective was to trigger chemical reactions between different additives and the reactive groups of the copolyester in order to create and identify new molecular structures. Several strategies were studied: the addition of polyetheramines presenting different molar masses and functionalities, the addition of phenolic resins in different conditions, and the in situ development during the extrusion process of a thermoset phase in the thermoplastic matrix by epoxide-amine reactions
5

Modifications chimiques de polyamide par extrusion réactive / Chemical modifications of polyamide by reactive extrusion

Auclerc, Mathilde 18 October 2018 (has links)
Résumé confidentiel / Résumé confidentiel
6

Avaliação das propriedades de oxirredução e reforço mecânico de materiais híbridos baseados em nanotubos de carbono sobre suportes microestruturados / Redox and mechanical reinforcement properties of carbon nanotubes composites grown on the surface of microstructured materials

Macedo, Nadia Guerra 26 October 2015 (has links)
Nanotubos de carbono (NTC) apresentam superlativas propriedades físico-químicas. Por essa razão, têm sido tema de diversas pesquisas, teóricas e experimentais, para sua aplicação em compósitos que transmitam a outros materiais de interesse, as suas propriedades intrínsecas superiores. Materiais híbridos apresentam propriedades que são diferentes das de seus componentes individuais, sendo resultado das interações e das quantidades de seus componentes. O presente trabalho teve como objetivo a investigação das propriedades híbridas que podem surgir quando nanotubos de carbono são crescidos verticalmente sobre diferentes tipos de substratos micrométricos. Particularmente, foram investigados o comportamento dos compósitos micro-nanoestruturados desenvolvidos, frente à redução de metais e ao reforço mecânico de um polímero termoplástico (PVC). Para conduzir o presente estudo, dois tipos de NTC foram crescidos sobre substratos de carvão ativado, grafita e dióxido de titânio, pelo método da deposição química de vapor (CVD). Estes substratos são, tradicionalmente, usados como agentes de redução, adsorventes e cargas para reforço mecânico. As principais técnicas de investigação do presente trabalho foram a microscopia eletrônica de varredura (MEV), espectroscopia por energia dispersiva de raios-X (EDS), acoplada ao MEV, difração de raios-X e também, no caso dos compósitos de PVC, ensaios de tração mecânica em um texturômetro. Os resultados demonstram que existem combinações entre o tipo de NTC e o suporte microestruturado, que podem resultar em propriedades que não são observadas nos constituintes dos compósitos estudados, quando estes estão na forma isolada. Portanto, o crescimento de nanoestruturas sobre os substratos pode gerar propriedades híbridas como: a redução e adsorção nos NTC, de certos íons metálicos de Ag e Cu, sem o uso de agente redutor ou aplicação de potencial externo. E também, pode dar origem a aditivos de reforço mecânico para PVC que podem levar a consideráveis aumentos no módulo de elasticidade e limite de resistência à tração, em relação ao PVC isoladamente (aumentos de 5.068,21 % e 4.110,74%, respectivamente) / Carbon nanotubes (CNT) have been the subject of several theoretical and experimental researches due to their superlative intrinsic physicochemical properties, especially in the field of composites. However, there are some problems concerned to the successful transmission of these superior properties to the materials of interest. Hybrid materials have properties that are different from those of their individual components, which results from the interactions and also the quantities of the components. This work aimed at investigating the hybrid properties that can arise when carbon nanostructures are vertically grown on different types of microstructured substrates. Particularly, the behavior of the micro-nanostructured composites has been investigated as a function of the chemical reduction of metal ions and the mechanical reinforcement of a thermoplastic polymer (PVC). In order to conduct this study, two types of CNT were grown on the surfaces of charcoal, graphite and titanium dioxide through the chemical vapor deposition (CVD) method. These substrates are traditionally used as reducing agents, adsorbents and reinforcing fillers. The PVC composite samples were characterized, mainly, by mechanical traction tests in a texturometer, and the other samples were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD). The results demonstrated that there are combinations between specific types of CNT and microstructured supports that can lead to properties not observed in the isolated constituents of the composite. Therefore, the growth of nanostructures on substrates can generate hybrid properties, such as the reduction of Ag and Cu ions and their direct adsorption on CNT without the need of a reducing agent or application of an external potential, as in the case of some charcoals. Additionally, some of these composites can form mechanical fillers for PVC, which can lead to substantial increases in the elasticity modulus and tensile strength, (5.068,21% and 4.110,74%, respectively), when compared to the isolated PVC.
7

Understanding the Chemistry and Mechanical Properties of Metal-Organic Framework-Polymer Composites

Yang, Xiaozhou 27 July 2023 (has links)
Metal-organic frameworks (MOFs) are an emerging class of materials exhibiting desirable properties and functionalities for a variety of applications, including catalysis, molecular separation, gas storage, and mechanical reinforcement. However, the majority of MOFs exist as particulate powders, limiting their transportability and applicability in practical fields. Polymers, on the other hand, are one of the most widely used materials in the world owing to their facile processability and low production cost. Combining MOFs and polymers to form MOF-polymer composites can potentially maintain the merits of both materials while overcoming drawbacks of each individual component. Specifically, MOFs are promising candidates as mechanical reinforcers for polymers because of their low density, high specific modulus, and controllable dimensions. Herein, we aim to provide a comprehensive investigation into the chemistry and mechanical properties of MOF-polymer composites. Various governing parameters, including particle aspect ratio (AR), MOF-particle interface, and intrinsic mechanical properties of MOFs, were thoroughly studied to construct an optimal pathway for fabricating mechanically reinforced MOF-polymer composites. Chapter 1 presents an introduction to MOFs, polymer composites, and mechanical properties and characterizations of polymeric materials. It serves as a foundation of this dissertation and outlines essential concepts for the scientific background. The primary factors that impact the mechanical properties of polymer composite are highlighted, leading to the following three research chapters. Comprehensive background on various characterization techniques that aim at mechanical properties is covered in detail. Chapter 2 focuses on the role of MOF AR on the mechanical properties of MOF-polymer composites. PCN-222, a Zr-MOF with porphyrin linkers, was synthesized with AR ranging from 3.4 to 54. The crystallinity and chemical structure of the MOFs remained consistent for different ARs, ensuring that the AR was the only variable in determining the mechanical reinforcement. Fabricated through the doctor-blade technique, the MOF-PMMA composite films showed homogeneous MOF distribution and alignment. Tensile tests revealed that Young's modulus of the composites increased with MOF AR, exhibiting a good agreement with a modified Halpin-Tsai model. Both storage and loss moduli were also enhanced following increased MOF AR. In addition, the thermal stability was also improved with the addition of MOF particles. In Chapter 3, the authors extend the understanding of mechanical properties of MOF-polymer composites to the interfacial properties between the two materials. Pristine MOFs often lack strong interactions with a polymer matrix due to the difference in chemical/physical properties. The authors developed a three-step synthetic route to grow PMMA on the surface of PCN-222. Owing to an efficient surface-initiated polymerization technique, the PMMA was successfully grafted with high molecular weight and grafting density. The molecular weight of PMMA could be controlled by simply varying polymerization time. The PMMA-grafted PCN-222 was manufactured along with PMMA matrix to form composite films. Mechanical analysis proved that the mechanical reinforcement was improved with increasing grafted molecular weight. Chapter 4 presents an experimental approach to unveil the structure-mechanical property of MOF single crystals, which provides insights on designing MOFs with desired mechanical strength. Zeolitic imidazolate frameworks (ZIFs), a subdivision of MOFs, were chosen as the template owing to their facile synthesis, structural diversity, and high crystallinity. Two types of micron-sized ZIFs, ZIF-8 with Zn2+ node and ZIF-67 with Co2+ node, were synthesized to compare the effect of metal-linker bond. Moreover, the linker composition was varied to examine the difference in crystal structure and defect level. The mechanical properties of these ZIF samples were revealed by nanoindentation on single particles. Overall, the stronger metal-linker bond and high crystallinity were able to yield the highest elastic modulus and hardness. Finally, Chapter 5 offers a comprehensive review on polymer-grafted MOF particles regarding the synthesis and applications associated with surface-anchored polymers. Various polymerization techniques were summarized, and their adjustment and limitations with respect to MOFs were highlighted. The novel and unique applications arisen from polymer-grafted MOFs and Mixed Matrix Membranes were thoroughly discussed. / Doctor of Philosophy / Polymer composites, a combination of polymer matrix and particle fillers, have shown great applicability in nearly every aspect of our daily lives. For example, rubber tires, composed of synthetic polymeric rubber and inorganic particle fillers (e.g., carbon black and glass fiber), have been a great booster for modern society owing to their durability and mechanical strength. Aircraft are also made of roughly 50% composite materials, because of their lightweight and high mechanical strength. Herein, we present a novel type of polymer composite using metal-organic frameworks (MOFs) as mechanical reinforcers. Thanks to the low density, high modulus, and tunable geometry, MOFs can be ideal candidates for mechanically reinforced polymer composites. In this dissertation, several fundamental parameters that impact the mechanical properties of MOF-polymer composites are discussed. The intent of this work is to provide mechanistic insights on the development of outstanding lightweight composites with efficient mechanical reinforcement.
8

Etude de dispersions de nanotubes de carbone par des polymères pour l’élaboration de composites conducteurs et structurés

Saint-Aubin, Karell 04 May 2010 (has links)
Cette thèse rapporte l’étude de dispersions de nanotubes de carbone par des polymères, la mise en forme de films composites et l’étude de leurs propriétés mécaniques ou de conduction électrique. La première partie est centrée autour de l’utilisation de l’acide poly-acrylique (PAA), qui se révèle un excellent agent dispersant des nanotubes dans l’eau. Une étude des interactions entre le polyélectrolyte et les nanotubes en fonction du pH est réalisée afin d’identifier les conditions de dispersion optimales. La réalisation de composites pour de potentielles applications dans les encres et peintures conductrices révèle qu’un contrôle suffisamment fin de l’adsorption du PAA et de la stabilité de la dispersion permet l’obtention de films à la fois homogènes et conducteurs électriques. La seconde partie de ce travail concerne l’utilisation d’un copolymère à blocs, le SBM, possédant des propriétés remarquables d’auto-organisation pour la réalisation de composites par voie solvant à base de nanotubes. L’originalité du système réside dans le fait que le SBM est à la fois agent dispersant des nanotubes mais également matrice structurante. Ce travail montre que la structure adoptée par le copolymère, qui dépend beaucoup du solvant employé, influence directement les propriétés mécaniques du matériau. De plus, l’addition de nanotubes améliore sensiblement les performances du composite. / This thesis deals with the study of carbon nanotube dispersions by polymers, the processing of composite films and the study of their mechanical and electrical properties. The first part of the work focuses on the use of poly(acrylic) acid (PAA), which proves to be an excellent dispersing agent in water. A study of the interactions between the PAA and the nanotubes is realised, tuned by the pH conditions. The fabrication of composite films, for future applications in the field of conductive inks and paints, shows that a fine control of the PAA adsorption and the dispersion stability allows the formation of homogeneous and conductive composites. In a second part, nanotube composites are elaborated from a block copolymer, the SBM, well-known for its remarkable self organization properties. Interestingly, the copolymer is at the same time the nanotube dispersing agent in the solvent and the structuring matrix of the final composite. This thesis shows that the copolymer structure, which strongly depends on the solvent used, influences the mechanical properties of composite films, and that the addition of nanotubes noticeably improves the performances.
9

Elaboration et étude des propriétés mécaniques et thermiques de matériaux constitués de nanotubes de carbone verticalement alignés / Elaboration and study of both mechanical and thermal properties of vertically carbon nanotubes reinforced materials

Bouillonnec, Jonathan 17 July 2015 (has links)
Les tapis de nanotubes de carbone verticalement alignés sont des candidats potentiels pour des applications telles que les interconnexions ou les matériaux d'interface thermique. Ce travail de recherche porte sur la synthèse de tapis de nanotubes de carbone alignés selon le procédé de dépôt chimique en phase vapeur (CVD) d'aérosols liquides, sur l'élaboration de nanocomposites constitués de différentes nuances de matrices époxy infiltrées au sein de ces tapis, ainsi que sur l'étude des propriétés mécaniques et thermiques longitudinales et transverses des tapis secs eux-mêmes et des nanocomposites 1D formés. Les conditions de synthèse permettent notamment de faire varier les caractéristiques des tapis telles que leur épaisseur, leur masse volumique, le diamètre externe moyen des nanotubes de carbone (NTC), l'espace intertube et la teneur volumique en NTC, alors que leur structure cristalline peut être modifiée par le biais d'un traitement thermique à haute température. L'objectif principal de ce travail consiste à démontrer et quantifier l'effet de certaines caractéristiques des tapis de nanotubes de carbone sur les propriétés mécaniques et thermiques des différents types de tapis et matériaux composites obtenus. Les deux méthodes d'imprégnation mises en oeuvre, voie liquide et infusion, conduisent à des tapis de NTC alignés denses avec un alignement des NTC conservé et une répartition homogène des NTC au sein du système époxy. La fraction volumique en NTC s'avère être le paramètre-clé permettant d'exacerber, dans la direction longitudinale aux NTC, les propriétés mécaniques et thermiques des nanocomposites. Par ailleurs, les tapis de NTC et les nanocomposites voient leurs propriétés de conduction thermique longitudinale nettement exacerbées lorsque les NTC présentent une amélioration de leur structure cristalline. L'augmentation significative des performances apportées par les tapis de NTC verticalement alignés au sein de ces matériaux nanocomposites anisotropes par rapport aux matrices organiques non chargées est prometteuse et ouvre des pistes de réflexion visant à répondre aux nouvelles exigences de multifonctionnalité des secteurs de l'aéronautique et de l'aérospatial. / Vertically aligned carbon nanotube carpets are potential candidates for applications such as interconnections or thermal interface materials (TIMs). This research work deals with the synthesis of aligned carbon nanotube carpets from the aerosol assisted chemical vapour deposition (CVD) technique, with the elaboration of nanocomposites made of different grades of epoxy matrix infiltrated within these carpets, as well as the study of both longitudinal and transverse mechanical and thermal properties of dry carpets themselves and 1D-nanocomposites separately. The synthesis conditions notably enable to vary characteristics of the differents carpets such as their thickness, their density, the mean external diameter of the carbon nanotubes (CNT), the intertube space and the CNT volume fraction, whereas their crystalline structure can be modified with a high temperature thermal treatment. The main goal of this work is to prove and quantify the effect of some of the characteristics of the carbon nanotubes carpets on both mechanical and thermal properties of the different kinds of CNT carpets and resulting composite materials. The two impregnation methods used, liquid way and infusion, lead to dense CNT carpets with a preserved alignment of the CNT and an homogeneous distribution of these latest within the epoxy system. The CNT volume content is evidenced as the key-parameter exacerbating the mechanical and thermal properties mainly in the longitudinal direction compared with the alignment axis of the CNTs. Moreover the mechanical and thermal conduction properties of the CNT carpets and the 1D-nanocomposites are clearly increased when the crystalline structure of the CNT is improved. The significant increasing of the properties brought by the vertically aligned CNT within these anisotropic 1D-nanocomposites compared with the only organic matrixes is promising and opens new pathways aiming to meet the latest specifications related to multifunctionnality in fields such as aeronautics and aerospace.
10

Spezifische Modifikation von Partikeloberflächen

Hanßke, Felix 12 September 2017 (has links)
Inspiriert durch natürliche Grenzflächenproteine in Knochen wurden bifunktionale Biokonjugate für verschiedene Grenzflächenstabilisierungen genutzt. In einem kombinatorischen Ansatz wurden materialspezifische Peptid-block-Polyethylenglycol-Konjugate eingesetzt, um die Grenzflächen von Nanopartikeln in Lösung sowie in Polymerkompositen zu stabilisieren. Dazu wurden biokombinatorisch ausgewählte Peptid-Sequenzen mit einer Affinität für MgF2-Oberflächen in Form eines MgF2-bindenden Konjugats (MBC) synthetisiert, welches die materialaffine Bindung der monodispersen Peptid-Domäne mit der zusätzlichen Funktion des synthetischen Polymer-Blocks verbindet. Aus detaillierten Untersuchungen der Bindungseigenschaften von MBC und davon abgeleiteten Konjugaten mit variierten Peptidarchitekturen bzw. Polymer-Blocklängen bei verschiedenen Inkubationsbedingungen ging hervor, dass das sequenzspezifisch bindende MBC das Potenzial zur Stabilisierung von MgF2-Nanopartikeln hat. Das Konjugat verhinderte die Agglomeration der Partikel und ermöglichte im Gegensatz zu etablierten Stabilisatoren die vollständige Redispergierbarkeit sogar nach Eintrocknung. Die Stabilisierung in Lösung wurde auf die Kompatibilisierung von Partikeln in Polycaprolacton (PCL)-Kompositen übertragen, in denen das grenzflächenaktive MBC die Materialeigenschaften von bioabbaubaren PCL/MgF2-Kompositen optimierte. Die Grenzflächenstabilisierung führte zur gleichzeitigen Erhöhung der Steifigkeit und der Zähigkeit der Materialien bis in den Bereich natürlicher Knochen. Durch die gemeinsame Zugabe von MBC-kompatibilisiertem MgF2 und Hyxdroxylapatit zu PCL wurde ein bioaktives Material geschaffen, das nachweislich die osteogene Differenzierung von mesenchymalen Stammzellen und die Mineralisierung von neuem Knochengewebe unterstützte. Damit stellt es ein vielversprechendes Komposit für die Regeneration von Knochengewebe und weitere Anwendungen dar. / Inspired by natural interface proteins in bone, bifunctional bioconjugates were exploited for different interface stabilization applications. The interfaces of nanoparticles both in solution and in polymeric composites were stabilized by combinatorially selected, material specific peptide-polymer conjugates. Peptide sequences showing affinity to MgF2 particle surfaces were selected from a phage display library and translated into a MgF2-binding peptide-block-poly(ethylene glycol) conjugate (MBC). The MBC combined the material-affine binding of the monodisperse peptide domain with an additional function of a synthetic polymer block. Detailed studies of the binding properties of MBC and congeneric conjugates with other peptide architectures or different polymer block lengths, as well as varied incubation conditions revealed the potential of the sequence-specific MBC to stabilize MgF2 nanoparticles in solution. The conjugate inhibited the agglomeration of the particles. In contrast to established stabilizers, it enabled fully redispersable nanoparticles even after complete drying. The stabilization approach in solution was expanded to the compatibilization of the particles in polycaprolactone (PCL) composites. Inspired by the structure of highly specific interface proteins, MBC optimized the material properties of biodegradable PCL/MgF2 composites. Additionally, the interface stabilization simultaneously increased both the stiffness and the toughness of the composites up to the range of natural bone. The addition of hydroxyapatite alongside MBC-compatibilized MgF2 to PCL created a bioactive material that showed enhanced osteogenic differentiation of mesenchymal stem cells and the mineralization of new bone tissue. Therefore, a mechanically reinforced, osteoinductive material was prepared showing high potential in extensive in vitro studies for biomedical applications such as guided bone regeneration, yet not limited to that.

Page generated in 0.5114 seconds