• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational Study of Calmodulin’s Ca2+-dependent Conformational Ensembles

Westerlund, Annie M. January 2018 (has links)
Ca2+ and calmodulin play important roles in many physiologically crucial pathways. The conformational landscape of calmodulin is intriguing. Conformational changes allow for binding target-proteins, while binding Ca2+ yields population shifts within the landscape. Thus, target-proteins become Ca2+-sensitive upon calmodulin binding. Calmodulin regulates more than 300 target-proteins, and mutations are linked to lethal disorders. The mechanisms underlying Ca2+ and target-protein binding are complex and pose interesting questions. Such questions are typically addressed with experiments which fail to provide simultaneous molecular and dynamics insights. In this thesis, questions on binding mechanisms are probed with molecular dynamics simulations together with tailored unsupervised learning and data analysis. In Paper 1, a free energy landscape estimator based on Gaussian mixture models with cross-validation was developed and used to evaluate the efficiency of regular molecular dynamics compared to temperature-enhanced molecular dynamics. This comparison revealed interesting properties of the free energy landscapes, highlighting different behaviors of the Ca2+-bound and unbound calmodulin conformational ensembles. In Paper 2, spectral clustering was used to shed light on Ca2+ and target protein binding. With these tools, it was possible to characterize differences in target-protein binding depending on Ca2+-state as well as N-terminal or C-terminal lobe binding. This work invites data-driven analysis into the field of biomolecule molecular dynamics, provides further insight into calmodulin’s Ca2+ and targetprotein binding, and serves as a stepping-stone towards a complete understanding of calmodulin’s Ca2+-dependent conformational ensembles. / <p>QC 20180912</p>
2

Functional dynamics of the anti-HIV lectin OAA and NMR methodology for the study of protein dynamics

Carneiro, Marta 18 November 2015 (has links)
No description available.
3

Discussing Molecular Baskets in the Universe of Paradox and Current State of Affairs in the Field of Molecular Nanodevices

Pavlovic, Radoslav 05 October 2022 (has links)
No description available.
4

Recréer et comprendre les mécanismes de liaison des biomolécules à l'aide d'un modèle d'ADN

Prévost-Tremblay, Carl 04 1900 (has links)
La reconnaissance moléculaire joue un rôle central dans tous les processus biologiques ainsi que dans le développement de nouvelles biotechnologies. Depuis les 60 dernières années, deux mécanismes de reconnaissance moléculaire ont permis de décrire le couplage entre la liaison et le changement conformationnel observé chez les biomolécules. Le mécanisme par ajustement induit a lieu lorsque le ligand se lie à l'état inactif de la biomolécule et induit un changement de conformation vers la forme active. Le mécanisme par sélection conformationnelle, quant à lui, a lieu lorsque le ligand se lie directement à l'état spontanément actif de plus faible population et le stabilise, déplaçant ainsi la population de biomolécule vers cet état. Bien que nous connaissons des exemples de protéines qui fonctionnent selon chacun de ces mécanismes, nous ne comprenons pas encore les différences entre les performances de ces mécanismes ni les déterminants moléculaires qui leur donnent lieu. Une compréhension approfondie de ces mécanismes nous permettrait de mieux comprendre pourquoi certaines protéines ont évolué selon un mécanisme en particulier ainsi que de s'inspirer de ces mécanismes pour le développement de biotechnologies finement régulées. Jusqu'à aujourd'hui, ces deux mécanismes ont exclusivement été étudiés dans le contexte des biomolécules naturelles, principalement des protéines, dont la complexité dynamique et structurale rend difficile la comparaison et la manipulation individuelle des différents paramètres thermodynamiques. Il est donc particulièrement ardu de caractériser le rôle de chacun de ces paramètres quant à la sélection et la performance de ces mécanismes. Pour contourner ces limitations expérimentales, nos travaux de recherche se sont intéressés à recréer ces mécanismes à l'aide d'interrupteurs d'ADN fluorescents pour lesquels il est possible de prédire et de modifier la structure et les propriétés thermodynamiques ainsi que d'en mesurer l'activation en temps réel. Ce faisant, il a été possible d'observer que le mécanisme par ajustement induit est obtenu lorsque le site de liaison est partiellement accessible dans l'état inactif. Nous avons aussi observé que ce mécanisme permet une activation et une désactivation jusqu'à 10 000 fois plus rapide que la sélection conformationnelle, qui par contraste, donne lieu à une activation plus lente ainsi qu'à un maintien prolongé de l'activation. Ces différences cinétiques suggèrent ainsi un rôle évolutif distinct pour chacun et laissent envisager des applications en biotechnologies pour l'optimisation de la cinétique. / Molecular recognition plays a central role in almost every biological and biotechnological process. Over the last 60 years, two molecular recognition mechanisms have been used to appropriately describe the coupling between binding and conformational change in biomolecules. The induced fit mechanism takes place when ligand binding to the inactive state of the biomolecule induces the conformational change leading to the active state. On the other hand, in the conformational selection mechanism, where active and inactive states exist in equilibrium, the ligand binds selectively to the active state of the biomolecule and shifts the equilibrium towards this state by stabilizing it. Even though these mechanisms have been widely studied, it is still unclear if they differ in performance or how each mechanism can be modulated. Such a fundamental understanding of the differences between these mechanisms would shed light on the reasons for an apparent selective pressure driving the use of a specific mechanism for a given biomolecule and would also allow us to engineer new biomolecules which would benefit from the strengths of these mechanisms. To date, both mechanisms have been exclusively studied in the context of naturally occurring biomolecules, mainly proteins, whose structural and dynamic complexity as well as diversity seem to prevent comparison and manipulation of specific and individual thermodynamic parameters. Consequently, only little progress has been made towards characterizing the role of certain key thermodynamic parameters on the selection and performance of the mechanism. To circumvent this limitation, we have reproduced these mechanisms using simple fluorescent DNA constructs allowing for reliable prediction and variation of both structure and thermodynamics as well as real time monitoring of the activation process in presence of a DNA target. These DNA "switches" allowed us to determine that an induced fit mechanism occurs when the binding site is partially available in the inactive state and that this mechanism allows for a faster activation and deactivation (up to four orders of magnitude) compared to a conformational selection mechanism, which in contrast corresponds to a slower activation and deactivation, leading to a longer activation period. The observed kinetic differences between these mechanisms points towards potential uses for both in different areas of biotechnology as well as some rationale behind evolution favoring one mechanism over the other for a given protein.

Page generated in 0.1957 seconds