• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 155
  • 85
  • 33
  • 21
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 370
  • 125
  • 89
  • 76
  • 76
  • 65
  • 63
  • 54
  • 44
  • 41
  • 39
  • 33
  • 32
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Exchange between ordered and disordered segments in CFTR modulates function at the expense of stability: A molecular pathway for misfolding of CFTR

Scholl, Daniel 16 October 2020 (has links) (PDF)
The genetic disease cystic fibrosis is the most common lethal genetic disease in Western countries. People born with cystic fibrosis suffer from many health issues including severe respiratory problems, inflammation and recurrent lung infections that can become fatal. The disease is caused by the loss of function of a protein called the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an chloride ion channel and, in healthy people, its activity assures correct water and salt transport across the cell membrane. Most cases of cystic fibrosis are caused by a genetic defect that leads to the deletion of phenylalanine 508 (F508del) in the amino acid sequence of the protein. The molecular mechanism by which F508del leads to loss of function of the CFTR channel is still poorly understood. The mutation is found in the first nucleotide binding domain (NBD1) and studies have shown that it causes misfolding of CFTR and subsequent degradation of the protein by the cellular quality control system. It is established that the mutation affects stability and dynamics of NBD1 but does not alter its structure significantly. This destabilizing effect of F508del can be compensated by specific mutations distributed over different regions of NBD1, leading to recovery of membrane expression of a functional channel. A surprising example involves the regulatory insertion (RI), a 32-residue long segment found in all CFTR orthologs but not in related channels or transporters. The RI is not resolved in crystal structures of NBD1 nor cryo-EM structures of CFTR and has been described as intrinsically disordered. Its functional role in CFTR is unknown. Removal of the RI increases the stability of the NBD1 domain and, in the context of F508del-CFTR, this deletion restores maturation, cell surface expression and activity of the mutant channel. We probed the effect of the RI on NBD1 structure, dynamics and allostery using X-ray crystallography, single molecule FRET and hydrogen-deuterium exchange. We discovered that the RI enables an alternative NBD1 fold which departs markedly from the canonical fold previously observed for this domain and the NBDs of other ABC transporters. The conformational equilibrium between these states is regulated by ATP binding and affected by disease-associated conditions. Aside from clear alterations to structure and dynamics of NBD1, the RI also affects allostery, i.e. how NBD1 structure and dynamics respond to perturbations such as ligand binding. Finally, we show that the RI-enabled conformation is adopted in full-length CFTR and associated with increased channel activity in electrophysiological assays. We then identify an allosteric network that links the structural hotspots of the conformational changes to F508 and its surroundings. Lastly, we argue that these conformational changes lead to unfolding of NBD1 in the context of F508del, providing a new model for the molecular mechanism leading to pathogenesis. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
162

The Conjugate Addition- Elimination Reaction of Morita-Baylis-Hillman C- Adducts: A Density Functional Theory Study

Tan, Davin 12 1900 (has links)
The Morita-Baylis-Hillman (MBH) reaction is a very versatile synthetic protocol to synthesize various useful compounds containing several functional groups. MBH acetates and carbonates are highly valued compounds as they have good potential to be precursors for organic synthesis reactions due to their ease of modification and synthesis. This thesis utilizes Density Functional Theory (DFT) calculations to understand the mechanism and selectivity of an unexpected tandem conjugate addition-elimination (CA-E) reaction of allylic alkylated Morita-Baylis-Hillman C- adducts. This synthetic protocol was developed by Prof. Zhi-Yong Jiang and co-workers from Henan University, China. The reaction required the use of sub-stoichiometric amounts of an organic or inorganic Brøndst base as a catalyst and was achieved with excellent yields (96%) in neat conditions. TBD gave the highest yield amongst the organocatalysts and Cs2CO3 gave the highest yield amongst all screened bases. A possible mechanistic pathway was proposed and three different energy profiles were modeled using 1,5,7-triaza-bicyclo-[4.4.0]-dec-5-ene (TBD), Cs2CO3 and CO32- as catalysts. All three models were able to explain the experimental observations, revealing both kinetic and thermodynamic factors influencing the selectivity of the CA-E reaction. CO32- model gave the most promising result, revealing a significant energy difference of 17.9 kcal/mol between the transition states of the two differing pathways and an energy difference of 20.9 kcal/mol between the two possible products. Although TBD modeling did not show significant difference in the transition states of the differing pathways, it revealed an unexpected secondary non-covalent electrostatic interaction, involving the electron deficient C atom of the triaza CN3 moiety of the TBD catalyst and the O atom of a neighboring NO2- group in the intermediate. Subsequent modeling using a similar substrate proved the possibility of this non-covalent electrostatic interaction, as there was significant overlap of the orbital cloud present in both the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) of the molecule between the C atom of the triaza moiety belonging to the TBD catalyst and the O atom of the nitro group of the substrate. The Mayer bond order was of the C-O interaction was determined to be 0.138.
163

Structure and Function of the G Domain of Parkinson's Disease-Associated Protein LRRK2

Wu, Chunxiang 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mutations in the gene encoding for leucine rich repeats kinase 2 (LRRK2) are commonly found in Parkinson’s disease. Recently, we found that the disease-associated point mutations at residue R1441 in the G domain (ROC) of LRRK2 resulted in perturbation of its GTPase activity. In this study, we compare the biochemical and biophysical properties of the ROC domain of LRRK2 carrying the PD-associated mutations at residue R1441 with those of the wild-type. We found that the disease-associated mutations (R1441C/G/H) showed marked quaternary structure compared to wild-type, in that the latter existed in solution in both monomeric and dimeric conformations dynamically regulated by GDP/GTP binding state, while we detected only monomeric conformation for three disease-associated mutants. To understand the structural basis for this plasticity and the activity reduction in the mutants, we solved a 1.6 Å crystal structure of the wild type ROC that shows a stable dimeric conformation in which the switch motifs and inter-switch regions mediate extensive interactions at the dimer interface. Residue R1441, where PD-associated mutations occur, forms exquisite interactions at the interface, thus suggesting a critical role of this residue in maintaining a dynamic dimer-monomer interconversion and conformational flexibility of the switch motifs. Consistently, substituting R1441 for other arbitrary mutations (R1441K/S/T) lead to similar perturbation of GTPase activity and dimerization defects as observed in the disease-associated mutants. Locking the ROC domain in either dimeric or monomeric conformations by engineered disulfide bond alters the binding affinity to GTP (but not GDP) and significantly reduce GTPase activity, thus suggesting that the dynamic dimer-monomer interconversion and conformational plasticity are essential for ROC function as a molecular switch modulating the kinase activity of LRRK2.
164

The Use of Protein Dynamics in the Study of Protein Conformational Transition and Functionality and Its Relevance in Drug Design

Babula, JoAnne Jean 02 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Misregulation of protein signaling pathways is the basis for many human diseases, and thus 95% of Food and Drug Administration approved drugs target proteins. Proteins are dynamic entities which can undergo transitions to reach different conformational states. The conformational state of a protein, or its three-dimensional shape, is intricately linked to functions, such as association with endogenous or exogenous binding partners, or catalysis. Thus, it is of interest to the pharmacological community to understand the mechanisms of protein conformational state transitions in order to better target and control protein functions. In two case studies, I show the importance of understanding protein dynamics in protein function and drug design. In the case of human immunodeficiency virus-1 (HIV-1) protease, a tremendous “open-and-closed” conformational transition is revealed by Molecular Dynamics Simulations (MDS). Through observing the dramatic difference in effectiveness of two Darunavir inhibitor derivatives differentiated by a single atom at locking the protease in the closed conformation, we discovered the residues and mechanism that lead to the protease’s conformational transition. This mechanism also explained the significant difference in the binding conformation and binding affinity of these two inhibitors. This study provides insight on how to improve the potency and anti-viral capacity of these compounds. In the second case study, MDS enabled us to observe the conformational transitions of a family of seven isoforms known as the 14-3-3 proteins. Many vital cellular processes involve all or select 14-3-3 isoforms, making this family very difficult to target. Through MDS, I discovered different conformational samplings among these 14-3-3 isoforms which were then validated by SAXS. Subsequently, a FRET-based ligand binding assay was developed which can screen for preferential 14-3-3 isoform binding of endogenous ligands, giving hope that using conformations unique to a 14-3-3 isoform of interest can provide a method for selective drug design. / 2022-03-09
165

Atomistically Deciphering Functional Large Conformational Changes of Proteins with Molecular Simulations / 分子シミュレーションによるタンパク質の機能的大規模構造変化の原子論的解明

Tamura, Kouichi 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19521号 / 理博第4181号 / 新制||理||1600(附属図書館) / 32557 / 京都大学大学院理学研究科化学専攻 / (主査)教授 林 重彦, 教授 谷村 吉隆, 教授 松本 吉泰 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
166

Insight into the chaperone mechanisms of Grp94

Amankwah, Yaa Sarfowah 07 June 2023 (has links)
No description available.
167

Ab Initio Molecular Dynamics Simulations to Understand Speciation and Solvation Structure of Common Herbicides

Windom, Zachary W 14 December 2018 (has links)
The application of commercial herbicide restricts weed growth and significantly improves control over crop vitality and yield. Despite their utility in the agriculture sector, herbicides have the potential to contaminate local water sources. To minimize environmental impacts, the development of efficient separation processes to clean-up contaminated water bodies is necessary. However, complex speciation and conformational flexibility in the condensed phase poses a significant challenge. In this work, we investigate structure and speciation of three common organic herbicides (glyphosate, atrazine, and metolachlor) in aqueous solution. We employ the PBE-D3 density functional to perform ab initio molecular dynamics (MD) simulations in the canonical and isothermal-isobaric ensembles. We analyze MD trajectories to understand hydrogen bonding dynamics and lifetime as well as diffusional and vibrational characteristics. To enhance configurational sampling, we conduct metadynamics simulations to obtain the free energies of dissociation and intramolecular proton transfer of glyphosate.
168

Studies on β-Bromo-substituted meso-Free Expanded Porphyrins and Their Conformational Transformations / β-ブロモ置換型メゾフリー環拡張ポルフィリンとその構造変換に関する研究

Nakai, Akito 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24441号 / 理博第4940号 / 新制||理||1706(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)准教授 齊藤 尚平, 教授 依光 英樹, 教授 畠山 琢次 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
169

New Insight into the Physical, Catalytic and Recognition Properties of Cucurbituril Macrocycles

Lu, Xiaoyong 25 September 2013 (has links)
No description available.
170

Studies on thermochemical properties of small organic molecules by mass spectrometry in relation to computational chemistry

Mukherjee, Sumit 01 January 2010 (has links) (PDF)
Melamine and cyanuric acid are widely used in industry and in scientific research. The mixture of melamine and cyanuric acid can form a hydrogen-bonded network structure which has been used as a surface template in supramolecular chemistry. In this work, the thermochemical properties of melamine and cyanuric acid were characterized using mass spectrometry measurements and computational studies. The proton affinity and the gas-phase acidity were determined with the application of the extended Cooks kinetic method. A triple-quadrupole mass spectrometer equipped with an electrospray source was employed for this study. For melamine, the proton affinity, the gas-phase basicity, and the protonation entropy were determined to be 226.2 ± 2.0 kcal/mol, 218.4 ± 2.0 kcal/mol and 26.2 ± 2.0 cal/mol K, respectively. For cyanuric acid, the deprotonation enthalpy, the gas-phase acidity, and the deprotonation entropy were determined to be 330.7 ± 2.0 kcal/mol, 322.9 ± 2.0 kcal/mol and 26.1 ± 2.0 cal/mol K, respectively. The geometries and energetics of melamine, cyanuric acid, and related molecules/ions were calculated at the B3LYP/6-31+G(d) level of theory. The theoretical proton affinity and deprotonation enthalpy were calculated using the corresponding isodesmic proton transfer reactions. The computationally predicted proton affinity of melamine (225.9 kcal/mol) and gas-phase deprotonation enthalpy of cyanuric acid (328.4 kcal/mol) were in good agreement with the experimental results. Melamine is best represented as the imide-like triazine-triamine form and the triazine nitrogen is more basic than the amino group nitrogen. Cyanuric acid is best represented as the keto-like tautomer and the N-H group is the most likely proton donor. Cyclohexane-based molecular switches have been of great interest in recent years. This work focused on the investigations of the thermochemical properties related to the switching process. A group of cyclohexane-based model compounds were selected for this study. The model compounds included trans -2-aminocyclohexanol, trans -4-aminocyclohexanol and trans -2-dimethylaminocyclohexanol. The proton affinities of the compounds were determined using the extended Cooks kinetic method. The values obtained were 238.5 ± 2.0 kcal/mol ( trans -2-dimethylaminocyclohexanol), 225.5 ± 2.0 kcal/mol ( trans -2-aminocyclohexanol) and 220.4 ± 2.0 kcal/mol ( trans -4-aminocyclohexanol). Various molecular structures related to the model compounds and the switching molecules were calculated at the B3LYP/6-31+G(d) level of theory. The theoretical proton affinities of all the molecules investigated were also calculated at the same level of theory using corresponding isodesmic reactions. The results show that the proton affinities decrease as the relative positions of amino and alcohol groups change from ortho to meta to para . The stronger proton affinity of the ortho isomer may be due to the efficient intramolecular hydrogen bonding in the protonated form. The proton affinity of trans -2-dimethylaminocyclohexanol is stronger than that of trans -2-aminocyclohexanol by about 13 kcal/mol. Substitution of hydrogen atoms by methyl groups at nitrogen promotes the intramolecular hydrogen bonding between the amino group and the hydroxyl group upon protonation. This, in turn, may enhance the proton affinity of methylated molecule. Computational studies also show interesting trends for stabilities and proton affinities of the different structures. These data may be useful as a guide for designing efficient conformational switches.

Page generated in 0.0827 seconds