Spelling suggestions: "subject:"conjugated gradient algorithm""
1 |
Reconstruction of the Temperature Profile Along a Blackbody Optical Fiber ThermometerBarker, David Gary 08 April 2003 (has links) (PDF)
A blackbody optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber forms an isothermal cavity, and the emission from this cavity is approximately equal to the emission from a blackbody. Standard two-color optical fiber thermometry involves measuring the spectral intensity at the end of the fiber at two wavelengths. The temperature at the sensing tip of the fiber can then be inferred using Planck's law and the ratio of the spectral intensities. If, however, the length of the optical fiber is exposed to elevated temperatures, erroneous temperature measurements will occur due to emission by the fiber. This thesis presents a method to account for emission by the fiber and accurately infer the temperature at the tip of the optical fiber. Additionally, an estimate of the temperature profile along the fiber may be obtained.
A mathematical relation for radiation transfer down the optical fiber is developed. The radiation exiting the fiber and the temperature profile along the fiber are related to the detector signal by a signal measurement equation. Since the temperature profile cannot be solved for directly using the signal measurement equation, two inverse minimization techniques are developed to find the temperature profile. Simulated temperature profile reconstructions show the techniques produce valid and unique results. Tip temperatures are reconstructed to within 1.0%.
Experimental results are also presented. Due to the limitations of the detection system and the optical fiber probe, the uncertainty in the signal measurement equation is high. Also, due to the limitations of the laboratory furnace and the optical detector, the measurement uncertainty is also high. This leads to reconstructions that are not always accurate. Even though the temperature profiles are not completely accurate, the tip-temperatures are reconstructed to within 1%—a significant improvement over the standard two-color technique under the same conditions. Improvements are recommended that will lead to decreased measurement and signal measurement equation uncertainty. This decreased uncertainty will lead to the development of a reliable and accurate temperature measurement device.
|
2 |
Error Estimation for Solutions of Linear Systems in Bi-Conjugate Gradient AlgorithmJain, Puneet January 2016 (has links) (PDF)
No description available.
|
3 |
Resolução de um problema térmico inverso utilizando processamento paralelo em arquiteturas de memória compartilhada / Resolution of an inverse thermal problem using parallel processing on shared memory architecturesAnsoni, Jonas Laerte 03 September 2010 (has links)
A programação paralela tem sido freqüentemente adotada para o desenvolvimento de aplicações que demandam alto desempenho computacional. Com o advento das arquiteturas multi-cores e a existência de diversos níveis de paralelismo é importante definir estratégias de programação paralela que tirem proveito desse poder de processamento nessas arquiteturas. Neste contexto, este trabalho busca avaliar o desempenho da utilização das arquiteturas multi-cores, principalmente o oferecido pelas unidades de processamento gráfico (GPUs) e CPUs multi-cores na resolução de um problema térmico inverso. Algoritmos paralelos para a GPU e CPU foram desenvolvidos utilizando respectivamente as ferramentas de programação em arquiteturas de memória compartilhada NVIDIA CUDA (Compute Unified Device Architecture) e a API POSIX Threads. O algoritmo do método do gradiente conjugado pré-condicionado para resolução de sistemas lineares esparsos foi implementado totalmente no espaço da memória global da GPU em CUDA. O algoritmo desenvolvido foi avaliado em dois modelos de GPU, os quais se mostraram mais eficientes, apresentando um speedup de quatro vezes que a versão serial do algoritmo. A aplicação paralela em POSIX Threads foi avaliada em diferentes CPUs multi-cores com distintas microarquiteturas. Buscando um maior desempenho do código paralelizado foram utilizados flags de otimização as quais se mostraram muito eficientes na aplicação desenvolvida. Desta forma o código paralelizado com o auxílio das flags de otimização chegou a apresentar tempos de processamento cerca de doze vezes mais rápido que a versão serial no mesmo processador sem nenhum tipo de otimização. Assim tanto a abordagem utilizando a GPU como um co-processador genérico a CPU como a aplicação paralela empregando as CPUs multi-cores mostraram-se ferramentas eficientes para a resolução do problema térmico inverso. / Parallel programming has been frequently adopted for the development of applications that demand high-performance computing. With the advent of multi-cores architectures and the existence of several levels of parallelism are important to define programming strategies that take advantage of parallel processing power in these architectures. In this context, this study aims to evaluate the performance of architectures using multi-cores, mainly those offered by the graphics processing units (GPUs) and CPU multi-cores in the resolution of an inverse thermal problem. Parallel algorithms for the GPU and CPU were developed respectively, using the programming tools in shared memory architectures, NVIDIA CUDA (Compute Unified Device Architecture) and the POSIX Threads API. The algorithm of the preconditioned conjugate gradient method for solving sparse linear systems entirely within the global memory of the GPU was implemented by CUDA. It evaluated the two models of GPU, which proved more efficient by having a speedup was four times faster than the serial version of the algorithm. The parallel application in POSIX Threads was evaluated in different multi-core CPU with different microarchitectures. Optimization flags were used to achieve a higher performance of the parallelized code. As those were efficient in the developed application, the parallelized code presented processing times about twelve times faster than the serial version on the same processor without any optimization. Thus both the approach using GPU as a coprocessor to the CPU as a generic parallel application using the multi-core CPU proved to be more efficient tools for solving the inverse thermal problem.
|
4 |
Resolução de um problema térmico inverso utilizando processamento paralelo em arquiteturas de memória compartilhada / Resolution of an inverse thermal problem using parallel processing on shared memory architecturesJonas Laerte Ansoni 03 September 2010 (has links)
A programação paralela tem sido freqüentemente adotada para o desenvolvimento de aplicações que demandam alto desempenho computacional. Com o advento das arquiteturas multi-cores e a existência de diversos níveis de paralelismo é importante definir estratégias de programação paralela que tirem proveito desse poder de processamento nessas arquiteturas. Neste contexto, este trabalho busca avaliar o desempenho da utilização das arquiteturas multi-cores, principalmente o oferecido pelas unidades de processamento gráfico (GPUs) e CPUs multi-cores na resolução de um problema térmico inverso. Algoritmos paralelos para a GPU e CPU foram desenvolvidos utilizando respectivamente as ferramentas de programação em arquiteturas de memória compartilhada NVIDIA CUDA (Compute Unified Device Architecture) e a API POSIX Threads. O algoritmo do método do gradiente conjugado pré-condicionado para resolução de sistemas lineares esparsos foi implementado totalmente no espaço da memória global da GPU em CUDA. O algoritmo desenvolvido foi avaliado em dois modelos de GPU, os quais se mostraram mais eficientes, apresentando um speedup de quatro vezes que a versão serial do algoritmo. A aplicação paralela em POSIX Threads foi avaliada em diferentes CPUs multi-cores com distintas microarquiteturas. Buscando um maior desempenho do código paralelizado foram utilizados flags de otimização as quais se mostraram muito eficientes na aplicação desenvolvida. Desta forma o código paralelizado com o auxílio das flags de otimização chegou a apresentar tempos de processamento cerca de doze vezes mais rápido que a versão serial no mesmo processador sem nenhum tipo de otimização. Assim tanto a abordagem utilizando a GPU como um co-processador genérico a CPU como a aplicação paralela empregando as CPUs multi-cores mostraram-se ferramentas eficientes para a resolução do problema térmico inverso. / Parallel programming has been frequently adopted for the development of applications that demand high-performance computing. With the advent of multi-cores architectures and the existence of several levels of parallelism are important to define programming strategies that take advantage of parallel processing power in these architectures. In this context, this study aims to evaluate the performance of architectures using multi-cores, mainly those offered by the graphics processing units (GPUs) and CPU multi-cores in the resolution of an inverse thermal problem. Parallel algorithms for the GPU and CPU were developed respectively, using the programming tools in shared memory architectures, NVIDIA CUDA (Compute Unified Device Architecture) and the POSIX Threads API. The algorithm of the preconditioned conjugate gradient method for solving sparse linear systems entirely within the global memory of the GPU was implemented by CUDA. It evaluated the two models of GPU, which proved more efficient by having a speedup was four times faster than the serial version of the algorithm. The parallel application in POSIX Threads was evaluated in different multi-core CPU with different microarchitectures. Optimization flags were used to achieve a higher performance of the parallelized code. As those were efficient in the developed application, the parallelized code presented processing times about twelve times faster than the serial version on the same processor without any optimization. Thus both the approach using GPU as a coprocessor to the CPU as a generic parallel application using the multi-core CPU proved to be more efficient tools for solving the inverse thermal problem.
|
5 |
A parallel version of the preconditioned conjugate gradient method for boundary element equationsPester, M., Rjasanow, S. 30 October 1998 (has links) (PDF)
The parallel version of precondition techniques is developed for
matrices arising from the Galerkin boundary element method for
two-dimensional domains with Dirichlet boundary conditions.
Results were obtained for implementations on a transputer network
as well as on an nCUBE-2 parallel computer showing that iterative
solution methods are very well suited for a MIMD computer. A
comparison of numerical results for iterative and direct solution
methods is presented and underlines the superiority of iterative
methods for large systems.
|
6 |
A parallel version of the preconditioned conjugate gradient method for boundary element equationsPester, M., Rjasanow, S. 30 October 1998 (has links)
The parallel version of precondition techniques is developed for
matrices arising from the Galerkin boundary element method for
two-dimensional domains with Dirichlet boundary conditions.
Results were obtained for implementations on a transputer network
as well as on an nCUBE-2 parallel computer showing that iterative
solution methods are very well suited for a MIMD computer. A
comparison of numerical results for iterative and direct solution
methods is presented and underlines the superiority of iterative
methods for large systems.
|
Page generated in 0.08 seconds