• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 12
  • 6
  • 6
  • 5
  • 2
  • 1
  • Tagged with
  • 86
  • 86
  • 28
  • 27
  • 17
  • 15
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[en] WATER AND OIL FLOW SIMULATION IN POROUS MEDIA / [pt] SIMULAÇÃO DO ESCOAMENTO DE ÁGUA E ÓLEO EM MEIOS POROSOS

MARCOS AURELIO CITELI DA SILVA 14 April 2004 (has links)
[pt] Muitos problemas provenientes do mundo real podem ser modelados por sistemas de equações diferenciais parciais (EDP´s). No entanto, as equações resultantes da discretização produzem matrizes grandes e freqüentementes mal condicionadas. Este trabaho implementa o método de elementos finitos mistos para resolver numericamente um sistema de EDP´s oriundo de um modelo de escoamento de fluidos em meios porosos e melhora sua performance usando precondicionadores e processamento paralelo. / [en] Many problems arising from real world can be represented by systems of partial diferential equations (PDE´s). However, the resulting discrete equations produce large and frequently bad conditioned matrices. This work implements the mixed finite element method to numerically solve a system of PDE´s coming from a multiphase flow in porous media model and improve its performance by preconditioners and parallel processing.
22

Image reconstruction with multisensors.

January 1998 (has links)
by Wun-Cheung Tang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references. / Abstract also in Chinese. / Abstracts --- p.1 / Introduction --- p.3 / Toeplitz and Circulant Matrices --- p.3 / Conjugate Gradient Method --- p.6 / Cosine Transform Preconditioner --- p.7 / Regularization --- p.10 / Summary --- p.13 / Paper A --- p.19 / Paper B --- p.36
23

Algorithms for a Partially Regularized Least Squares Problem

Skoglund, Ingegerd January 2007 (has links)
<p>Vid analys av vattenprover tagna från t.ex. ett vattendrag betäms halten av olika ämnen. Dessa halter är ofta beroende av vattenföringen. Det är av intresse att ta reda på om observerade förändringar i halterna beror på naturliga variationer eller är orsakade av andra faktorer. För att undersöka detta har föreslagits en statistisk tidsseriemodell som innehåller okända parametrar. Modellen anpassas till uppmätta data vilket leder till ett underbestämt ekvationssystem. I avhandlingen studeras bl.a. olika sätt att säkerställa en unik och rimlig lösning. Grundidén är att införa vissa tilläggsvillkor på de sökta parametrarna. I den studerade modellen kan man t.ex. kräva att vissa parametrar inte varierar kraftigt med tiden men tillåter årstidsvariationer. Det görs genom att dessa parametrar i modellen regulariseras.</p><p>Detta ger upphov till ett minsta kvadratproblem med en eller två regulariseringsparametrar. I och med att inte alla ingående parametrar regulariseras får vi dessutom ett partiellt regulariserat minsta kvadratproblem. I allmänhet känner man inte värden på regulariseringsparametrarna utan problemet kan behöva lösas med flera olika värden på dessa för att få en rimlig lösning. I avhandlingen studeras hur detta problem kan lösas numeriskt med i huvudsak två olika metoder, en iterativ och en direkt metod. Dessutom studeras några sätt att bestämma lämpliga värden på regulariseringsparametrarna.</p><p>I en iterativ lösningsmetod förbättras stegvis en given begynnelseapproximation tills ett lämpligt valt stoppkriterium blir uppfyllt. Vi använder här konjugerade gradientmetoden med speciellt konstruerade prekonditionerare. Antalet iterationer som krävs för att lösa problemet utan prekonditionering och med prekonditionering jämförs både teoretiskt och praktiskt. Metoden undersöks här endast med samma värde på de två regulariseringsparametrarna.</p><p>I den direkta metoden används QR-faktorisering för att lösa minsta kvadratproblemet. Idén är att först utföra de beräkningar som kan göras oberoende av regulariseringsparametrarna samtidigt som hänsyn tas till problemets speciella struktur.</p><p>För att bestämma värden på regulariseringsparametrarna generaliseras Reinsch’s etod till fallet med två parametrar. Även generaliserad korsvalidering och en mindre beräkningstung Monte Carlo-metod undersöks.</p> / <p>Statistical analysis of data from rivers deals with time series which are dependent, e.g., on climatic and seasonal factors. For example, it is a well-known fact that the load of substances in rivers can be strongly dependent on the runoff. It is of interest to find out whether observed changes in riverine loads are due only to natural variation or caused by other factors. Semi-parametric models have been proposed for estimation of time-varying linear relationships between runoff and riverine loads of substances. The aim of this work is to study some numerical methods for solving the linear least squares problem which arises.</p><p>The model gives a linear system of the form <em>A</em><em>1x1</em><em> + A</em><em>2x2</em><em> + n = b</em><em>1</em>. The vector <em>n</em> consists of identically distributed random variables all with mean zero. The unknowns, <em>x,</em> are split into two groups, <em>x</em><em>1</em><em> </em>and <em>x</em><em>2</em><em>.</em> In this model, usually there are more unknowns than observations and the resulting linear system is most often consistent having an infinite number of solutions. Hence some constraint on the parameter vector x is needed. One possibility is to avoid rapid variation in, e.g., the parameters<em> x</em><em>2</em><em>.</em> This can be accomplished by regularizing using a matrix <em>A</em><em>3</em>, which is a discretization of some norm. The problem is formulated</p><p>as a partially regularized least squares problem with one or two regularization parameters. The parameter <em>x</em><em>2</em> has here a two-dimensional structure. By using two different regularization parameters it is possible to regularize separately in each dimension.</p><p>We first study (for the case of one parameter only) the conjugate gradient method for solution of the problem. To improve rate of convergence blockpreconditioners of Schur complement type are suggested, analyzed and tested. Also a direct solution method based on QR decomposition is studied. The idea is to first perform operations independent of the values of the regularization parameters. Here we utilize the special block-structure of the problem. We further discuss the choice of regularization parameters and generalize in particular Reinsch’s method to the case with two parameters. Finally the cross-validation technique is treated. Here also a Monte Carlo method is used by which an approximation to the generalized cross-validation function can be computed efficiently.</p>
24

Algorithms for a Partially Regularized Least Squares Problem

Skoglund, Ingegerd January 2007 (has links)
Vid analys av vattenprover tagna från t.ex. ett vattendrag betäms halten av olika ämnen. Dessa halter är ofta beroende av vattenföringen. Det är av intresse att ta reda på om observerade förändringar i halterna beror på naturliga variationer eller är orsakade av andra faktorer. För att undersöka detta har föreslagits en statistisk tidsseriemodell som innehåller okända parametrar. Modellen anpassas till uppmätta data vilket leder till ett underbestämt ekvationssystem. I avhandlingen studeras bl.a. olika sätt att säkerställa en unik och rimlig lösning. Grundidén är att införa vissa tilläggsvillkor på de sökta parametrarna. I den studerade modellen kan man t.ex. kräva att vissa parametrar inte varierar kraftigt med tiden men tillåter årstidsvariationer. Det görs genom att dessa parametrar i modellen regulariseras. Detta ger upphov till ett minsta kvadratproblem med en eller två regulariseringsparametrar. I och med att inte alla ingående parametrar regulariseras får vi dessutom ett partiellt regulariserat minsta kvadratproblem. I allmänhet känner man inte värden på regulariseringsparametrarna utan problemet kan behöva lösas med flera olika värden på dessa för att få en rimlig lösning. I avhandlingen studeras hur detta problem kan lösas numeriskt med i huvudsak två olika metoder, en iterativ och en direkt metod. Dessutom studeras några sätt att bestämma lämpliga värden på regulariseringsparametrarna. I en iterativ lösningsmetod förbättras stegvis en given begynnelseapproximation tills ett lämpligt valt stoppkriterium blir uppfyllt. Vi använder här konjugerade gradientmetoden med speciellt konstruerade prekonditionerare. Antalet iterationer som krävs för att lösa problemet utan prekonditionering och med prekonditionering jämförs både teoretiskt och praktiskt. Metoden undersöks här endast med samma värde på de två regulariseringsparametrarna. I den direkta metoden används QR-faktorisering för att lösa minsta kvadratproblemet. Idén är att först utföra de beräkningar som kan göras oberoende av regulariseringsparametrarna samtidigt som hänsyn tas till problemets speciella struktur. För att bestämma värden på regulariseringsparametrarna generaliseras Reinsch’s etod till fallet med två parametrar. Även generaliserad korsvalidering och en mindre beräkningstung Monte Carlo-metod undersöks. / Statistical analysis of data from rivers deals with time series which are dependent, e.g., on climatic and seasonal factors. For example, it is a well-known fact that the load of substances in rivers can be strongly dependent on the runoff. It is of interest to find out whether observed changes in riverine loads are due only to natural variation or caused by other factors. Semi-parametric models have been proposed for estimation of time-varying linear relationships between runoff and riverine loads of substances. The aim of this work is to study some numerical methods for solving the linear least squares problem which arises. The model gives a linear system of the form A1x1 + A2x2 + n = b1. The vector n consists of identically distributed random variables all with mean zero. The unknowns, x, are split into two groups, x1 and x2. In this model, usually there are more unknowns than observations and the resulting linear system is most often consistent having an infinite number of solutions. Hence some constraint on the parameter vector x is needed. One possibility is to avoid rapid variation in, e.g., the parameters x2. This can be accomplished by regularizing using a matrix A3, which is a discretization of some norm. The problem is formulated as a partially regularized least squares problem with one or two regularization parameters. The parameter x2 has here a two-dimensional structure. By using two different regularization parameters it is possible to regularize separately in each dimension. We first study (for the case of one parameter only) the conjugate gradient method for solution of the problem. To improve rate of convergence blockpreconditioners of Schur complement type are suggested, analyzed and tested. Also a direct solution method based on QR decomposition is studied. The idea is to first perform operations independent of the values of the regularization parameters. Here we utilize the special block-structure of the problem. We further discuss the choice of regularization parameters and generalize in particular Reinsch’s method to the case with two parameters. Finally the cross-validation technique is treated. Here also a Monte Carlo method is used by which an approximation to the generalized cross-validation function can be computed efficiently.
25

Regularization Using a Parameterized Trust Region Subproblem

Grodzevich, Oleg January 2004 (has links)
We present a new method for regularization of ill-conditioned problems that extends the traditional trust-region approach. Ill-conditioned problems arise, for example, in image restoration or mathematical processing of medical data, and involve matrices that are very ill-conditioned. The method makes use of the L-curve and L-curve maximum curvature criterion as a strategy recently proposed to find a good regularization parameter. We describe the method and show its application to an image restoration problem. We also provide a MATLAB code for the algorithm. Finally, a comparison to the CGLS approach is given and analyzed, and future research directions are proposed.
26

Reconstruction of the temperature profile along a blackbody optical fiber thermometer /

Barker, David G. January 2003 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mechanical Engineering, 2003. / Includes bibliographical references (p. 87-89).
27

Natural gas stability and thermal history of the Arbuckle Reservoir, Western Arkoma Basin /

Tabibian, Mahmoud. January 1993 (has links)
Thesis (Ph.D.)--University of Tulsa, 1993. / Includes bibliographical references (leaves 254-269).
28

Comparison of Bayesian learning and conjugate gradient descent training of neural networks

Nortje, Willem Daniel. January 2001 (has links)
Thesis (M. Eng.)(Electronics)--University of Pretoria, 2001. / Title from opening screen (viewed March 10, 2005. Summaries in Afrikaans and English. Includes bibliography and index.
29

The use of preconditioned iterative linear solvers in interior-point methods and related topics

O'Neal, Jerome W. January 2005 (has links)
Thesis (Ph. D.)--Industrial and Systems Engineering, Georgia Institute of Technology, 2006. / Parker, R. Gary, Committee Member ; Shapiro, Alexander, Committee Member ; Nemirovski, Arkadi, Committee Member ; Green, William, Committee Member ; Monteiro, Renato, Committee Chair.
30

[en] NUMERICAL SOLUTIONS FOR EIGENPROBLEMS ASSOCIATED TO SYMMETRIC OPERATORS / [pt] SOLUÇÃO NUMÉRICA DE AUTO-PROBLEMAS ASSOCIADOS A OPERADORES SIMÉTRICOS

PAULO ROBERTO GARDEL KURKA 29 August 2012 (has links)
[pt] Desenvolve-se uma técnica para a extração de auto-pares relacionados com a solução de problemas de Elementos Finitos. O algoritmo consiste no uso dos métodos da Iteração Inversa e Gradiente Conjugado para a obtenção do vetor solução associado ao menor auto-valor. As soluções do auto-sistema são calculadas sequencialmente pela modificação da matriz dos coeficientes das equações de equilíbrio do problema através do uso de uma técnica de Deflação. O uso extensivo desta técnica introduz auto-valores múltiplos na matriz dos coeficientes, tornando necessário proceder-se a uma combinação dos dois métodos. É efetuado também um estudo para encontrar vetores iniciais apropriados a serem utilizados pelos métodos. O algoritmo foi implementado e alguns resultados de resolução de exemplos são apresentados, para ilustrar o seu desempenho. / [en] A vector iterative technique is developed for the extraction of eigenpairs related to the solution of finite element problems. The algorithm consists of using inverse iteration and conjugate gradient methods so as to obtain the solution vector associated to the smallest eigenvalue. Eigensolutions are sequentially calculated by replacing the coefficient matrix in the problem equilibrium equation using a deflation technique. The extensive usage of this technique, introduces multiple eigenvalue in the coefficient matrix, requiring a procedure to combine both methods. Also, a study is performed to find the appropriate starting vector to be used with methods. The algorithm has been implemented and the results of some example solutions are given that yield insight into its predictive capabilities.

Page generated in 0.088 seconds