• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HipersuperfÃcies cujas geodÃsicas tangentes nÃo cobrem o espaÃo ambiente / Hypersurfaces whose tangent geodesics do not cover the ambient space

Emanuel MendonÃa Viana 30 July 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / Seja I : ∑n → Mn+1 uma imersÃo de uma variedade conexa n-dimensional ∑ em uma variedade Riemanniana completa conexa (n + 1)-dimensional M sem pontos conjugados. Suponha que a uniÃo das geodÃsicas tangentes a I nÃo cobrem M. Sobre essa hipÃtese temos dois resultados: 1. Se a cobertura universal de ∑ Ã compacta, entÃo M Ã simplesmente conexa. 2. Se I Ã um mergulho prÃprio e M Ã simplesmente conexa, entÃo I(∑) Ã um grÃfico normal sobre um subconjunto aberto de uma esfera geodÃsica. AlÃm disso, existe um conjunto estrelado aberto A M tal que A Ã uma variedade com fronteira I(∑). / Let I : ∑n → Mn+1 be an immersion of an n-dimensional connected manifold ∑ in an (n + 1)-dimensional connected completed Riemannian manifold M without conjugate points. Assume that the union of geodesics tangent to I does not cover M. Under these hypotheses we have two results: 1. M is simply connected provided that the universal covering of ∑ is compact. 2. If I is a proper embedding and M is simply connected, then I(∑) is a normal graph over an open subset os a geodesic sphere. Furthermore, there exists an open star-shaped set A M such that A is a manifold with the boundary I(∑).

Page generated in 0.0619 seconds