1 |
Cooperative Perception for Connected Autonomous Vehicle Edge Computing SystemChen, Qi 08 1900 (has links)
This dissertation first conducts a study on raw-data level cooperative perception for enhancing the detection ability of self-driving systems for connected autonomous vehicles (CAVs). A LiDAR (Light Detection and Ranging sensor) point cloud-based 3D object detection method is deployed to enhance detection performance by expanding the effective sensing area, capturing critical information in multiple scenarios and improving detection accuracy. In addition, a point cloud feature based cooperative perception framework is proposed on edge computing system for CAVs. This dissertation also uses the features' intrinsically small size to achieve real-time edge computing, without running the risk of congesting the network. In order to distinguish small sized objects such as pedestrian and cyclist in 3D data, an end-to-end multi-sensor fusion model is developed to implement 3D object detection from multi-sensor data. Experiments show that by solving multiple perception on camera and LiDAR jointly, the detection model can leverage the advantages from high resolution image and physical world LiDAR mapping data, which leads the KITTI benchmark on 3D object detection. At last, an application of cooperative perception is deployed on edge to heal the live map for autonomous vehicles. Through 3D reconstruction and multi-sensor fusion detection, experiments on real-world dataset demonstrate that a high definition (HD) map on edge can afford well sensed local data for navigation to CAVs.
|
2 |
Intersection coordination for Autonomous VehiclesAlhuttaitawi, Saif January 2019 (has links)
Connected Autonomous Vehicles require intelligent autonomous intersection management for safe and efficient operation. Given the uncertainty in vehicle trajectory, intersection management techniques must consider a safety buffer among the vehicles, which must also account for the network and computational delay, queue and determine the best solution to avoid traffic congestions (smart intersection management), in this paper we model traffic by using Poisson distribution method then add a birth-death processes for each state and combine both two in one queuing system (The Markovian chain) to model the traffic.Also, this paper will compare some autonomous vehicles communication techniques in intersections to draw the best scenario for autonomous vehicle network communication in order to reduce the traffic congestion in an intersection.The Connected Autonomous Vehicles and a normal autonomous vehicle, as well from the third line of the intersection a mix between the both will be provided into the intersection.The last section is about applying the results from the first and second research question into a simulator and compare the simulation results to approve the advantage of using the next generation of transportation technology (The connected autonomous vehicles) over the normal conventional vehicles.
|
3 |
Cooperative ADAS and driving, bio-inspired and optimal solutionsValenti, Giammarco 07 April 2022 (has links)
Mobility is a topic of great interest in research and engineering since critical aspects such as safety, traffic efficiency, and environmental sustainability still represent wide open challenges for researchers and engineers. In this thesis, at first, we address the cooperative driving safety problem both from a centralized and decentralized perspective. Then we address the problem of optimal energy management of hybrid vehicles to improve environmental sustainability, and finally, we develop an intersection management systems for Connected Autonomous Vehicle to maximize the traffic efficiency at an intersection. To address the first two topics, we define a common framework. Both the cooperative safety and the energy management for Hybrid Electric Vehicle requires to model the driver behavior. In the first case, we are interested in evaluating the safety of the driver’s intentions, while in the second case, we are interested in predicting the future velocity profile to optimize energy management in a fixed time horizon. The framework is the Co-Driver, which is, in short, a bio-inspired agent able both to model and to imitate a human driver. It is based on a layered control structure based on the generation of atomic human-like longitudinal maneuvers that compete with each other like affordances. To address driving safety, the Co-Driver behaves like a safe driver, and its behavior is compared to the actual driver to understand if
he/she is acting safely and providing warnings if not. In the energy management problem, the Co-Driver aims at imitating the driver to predict the future velocity. The Co-Driver generates a set of possible maneuvers and selects one of them, imitating the action selection process of the driver. At first, we address the problem of safety by developing and investigating a framework for Advanced Driving
Assistance Systems (ADAS) built on the Co-Driver. We developed and investigated this framework in an innovative context of new intelligent road infrastructure, where vehicles and roads communicate. The
infrastructure that allows the roads to interact with vehicles and the environment is the topic of a research project called SAFESTRIP. This project is about deploying innovative sensors and communication devices on the road that communicate with all vehicles. Including vehicles that are equipped with Vehicle-To-Everything (V2X) technology and vehicles that are not, using an interface (HMI) on smart-phones.
Co-Driver-based ADAS systems exploit connections between vehicles and (smart) roads provided by SAFESTRIP to cover several safety-critical use cases: pedestrian protection, wrong-way vehicles on-ramps, work-zones on roads and intersections. The ADAS provide personalized warning messages that account for the adaptive driver behavior to maximize the acceptance of the system. The ability of the framework to predict human drivers’ intention is exploited in a second application to improve environmental sustainability. We employ it to feed with the estimated speed profile a novel online Model
Predictive Control (MPC) approach for Hybrid Electric Vehicles, introducing a state-of-the-art electrochemical model of the battery. Such control aims at preserving battery life and fuel consumption through equivalent costs. We validated the approach with actual driving data used to simulate vehicles and the power-train dynamics. At last, we address the traffic efficiency problem in the context of autonomous vehicles crossing an intersection. We propose an intersection management system for Connected Autonomous Vehicles based on a bi-level optimization framework. The motion planning of the vehicle is provided by a simplified optimal control problem, while we formulate the intersection management problem (in terms of order and timing) as a Mixed Integer Non-Linear Programming. The latter approximates a linear problem with a powerful piecewise linearization technique. Therefore, thanks to this technique, we can bound the error and employ commercial solvers to solve the problem (fast enough). Finally, this framework is validated in simulation and compared with the "Fist-Arrived First-Served" approach to show the impact of the proposed algorithm.
|
4 |
Characterization and Optimization of Perception Deep Neural Networks on the Edge for Connected Autonomous VehiclesTang, Sihai 05 1900 (has links)
This dissertation presents novel approaches to optimizing convolutional neural network (CNN) architectures for connected autonomous vehicle (CAV) workload on edge, tailored to surmount the challenges inherent in cooperative perception under the stringent resource constraints of edge devices (an endpoint on the network, the interface between the data center and the real world). Employing a modular methodology, this research utilizes the insights from granular examination of CAV perception workloads on edge platforms, identifying and analyzing critical bottlenecks. Through memory contention-aware neural architecture search (NAS), coupled with multi-objective optimization (MOO) and the Non-dominated Sorting Genetic Algorithm II (NSGA-II), this work dynamically optimizes CNN architectures, focusing on reducing memory cost, layer configuration and parameter optimization to reach set hardware constraints whilst maintaining a target precision performance. The results of this exploration are significant, achieving a 63% reduction in memory usage while maintaining a precision rate above 80% for CAV relevant object classes. This dissertation makes novel contributions to the field of edge computing in CAVs, offering a scalable and automated pipeline framework for dynamically obtaining an optimized model for given constraints, thus enabling CAV workloads on edge. In future research, this dissertation also opens multiple different venues for areas of integration. The modular aspect of the pipeline allows for security, privacy, scalability, and energy constraints to be added natively. Through detailed layer by layer analysis and refinement, this dissertation can ensure that CAVs can fully utilize any suitable edge device for the workload requested to realize autonomous driving for everyone.
|
Page generated in 0.0927 seconds