• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 33
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 72
  • 56
  • 55
  • 53
  • 39
  • 28
  • 25
  • 25
  • 24
  • 23
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Importância da conservação in situ de Copaifera langsdorffii Desf. em remanescentes de cerrado de propriedades particulares rurais / Importance of in situ conservation of Copaifera langsdorffii Desf. in cerrado fragments of rural private properties

Souza, Renata Gabriela Villegas de Castro e 15 April 2011 (has links)
A espécie arbórea Copaifera langsdorffii foi utilizada como modelo de estudo para manutenção da estrutura demográfica, diversidade genética e do fluxo gênico aparente entre as Unidades de Conservação (UCs) e em propriedades particulares rurais (PPRs) no cerrado do Estado de São Paulo. Para tanto, utilizou-se oito locos microssatélites nucleares específicos de C. langsdorffii; e foram mapeados, mensurados e genotipados ao todo 400 indivíduos com DAP 5 cm em quatro áreas nas cidades de Assis, Itirapina e Brotas. Em Assis foram amostrados 100 indivíduos na Estação Ecológica de Assis (EEA) e 100 indivíduos em uma PPR a 13 km de distância da EEA. Em Itirapina 100 indivíduos foram amostrados na Estação Ecológica de Itirapina (EEI) e 100 indivíduos numa PPR em Brotas a 24 km de distância da EEI. As populações em propriedade particulares rurais e unidades de conservação apresentaram alta diversidade genética. Contudo as PPRs tiveram um número maior de alelos exclusivos do que as UCs, indicando que as populações nas PPRs necessitam urgentemente de planos de manejo para conservar esses alelos exclusivos que podem conferir às populações do cerrado vantagens adaptativas. Todas as populações apresentaram fraca estrutura genética espacial, porém significativa por volta de 20 m de distância, indicando uma dispersão restrita de sementes. Foi observado nas populações analisadas um alto índice de fixação que, provavelmente, deve-se à sobreposição de gerações. A estimativa do tamanho efetivo das populações sugere que tanto as UCs quanto as PPRs têm área mínima viável para a conservação in situ das respectivas populações. A divergência genética entre as populações foi alta segundo o estimador \' ST G e o fluxo gênico aparente entre as UCs e PPRs foi baixo, sendo insuficiente para contrapor os efeitos da deriva genética. A alta porcentagem de alelos raros encontrados nas populações, provavelmente, evidencia o comprometimento das mesmas com a perda de diversidade genética, através da deriva genética. É fundamental a conservação de remanescentes de cerrado em áreas particulares rurais, para que seja mantida a manutenção do potencial evolutivo da espécie no longo prazo. A C. langsdorffii mostrou-se ser uma espécie eficiente para estudos comparativos em áreas de cerrado, provavelmente devido à sua ampla abrangência e alta densidade populacional. / The tree species Copaifera langsdorffii was used as a model for maintaining the population structure, genetic diversity and gene flow between Protected Areas (PAs) and Rural Private Properties (RPPs) in the cerrado of São Paulo State. For this purpose, eight nuclear microsatellite loci specific of C. langsdorffii were used, and altogether 400 individuals were mapped, measured and genotyped with DHB 5 cm in four areas in the municipalities of Assis, Itirapina and Brotas. In Assis, 100 individuals were sampled at the Assis Ecological Station (AES) and 100 individuals in a RPP 13 km away from the EEA. In Itirapina 100 individuals were collected at the Itirapina Ecological Station (IES) and 100 individuals in a RPP in Brotas 24 km away from the IES. The populations in RPPs and PAs showed high genetic diversity. However the RPPs had a greater number of exclusive alleles than the PAs, indicating that the populations of RPPs are in urgent need of management plans to conserve such alleles, which can confer to the populations of cerrado adaptive advantages. All populations showed weak spatial genetic structure, but significant around 20 m away, indicating a restricted dispersal of seeds. It was observed in the populations analyzed a high fixation rate which is probably due to the overlapping of generations. The estimated effective size of populations suggests that both PAs and RPPs have minimum viable area for in situ conservation of their populations. The genetic divergence among populations was high according to estimator \' ST G and the apparent gene flow between PAs and RPPs was low, insufficient to counteract the effects of genetic drift. The high percentage of rare alleles found in populations probably demonstrates the compromising condition of the populations with loss of genetic diversity through genetic drift. The conservation of cerrado fragments in rural private properties is essential to ensure the evolutionary potential of species in the long term. C. langsdorffii proved to be an efficient species for comparative studies in cerrado areas, probably due to its wide coverage and high population density.
52

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
53

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
54

Planning for nature-based recreational activities in Hong Kong

Chung, Hoi-yin, 鍾海言 January 2014 (has links)
Demand for outdoor recreation has been increasing, probably due to changing lifestyle, increasing accessibility and most importantly, the need to escape from the busy city life. The rising environmental awareness couples with deteriorating environmental quality in city have encouraged people to visit the countryside to relax physically and mentally, bringing about nature-based recreation which refers to activities carried in the natural environment for self-enjoyment and pleasure. Through engaging in nature-based recreational activities, conservation of natural resources and recreation needs of human can be achieved, as well as arousing environmental awareness. Hence, nature-based recreation is regarded as a sustainable way to serve the nature and mankind. Yet, recreational activities in nature can impose pressure on nature and thus planning is essential for nature-based recreation, so as to comply with the obligation of nature conservation and optimize recreation opportunities for people. This study aimed to investigate and assess the effectiveness of planning of naturebased recreational activities in Hong Kong, hence provide suggestions to improve the provisions and enhance the experiences of nature-based recreational activities. The overall planning of nature-based recreation in Hong Kong was investigated and Shing Mun Reservoir, Nam Sang Wai and Fung Yuen Butterfly Reserve were chosen as studied sites for evaluation. Questionnaires and interviews had been conducted to gather opinions of visitors, green group and planner. In general, it is found that the country park system and the Management Agreement Scheme formed the skeleton of planning of nature-based recreational activities. Yet, the current planning provisions were insufficient to cover all existing and potential venues. Problems were identified in the insufficient protection to natural resources and lack of adaptability and evaluation of the country park system, lack of understanding and appreciation of the nature by the public, insufficient supports to facilitate nongovernment planning and management to nature-based recreational activities, and lack of determination in conserving the nature in macro planning. It is recommended to enhance the current country park system, including natural resources protection, nature education, regulation assessment and evaluation, and improve adaptability; enhance Management Agreement Scheme to minimize the management difficulties; and extend the coverage of Hong Kong Planning Standard and Guidelines to include nature-based recreation and creating ancillary guidelines for planning to remind key issues. Further, strong determination in nature conservation and sustainability of the government is important to guide and facilitate effective planning for nature-based recreational activities. / published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
55

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
56

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
57

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
58

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
59

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
60

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).

Page generated in 0.1375 seconds