• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 12
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 11
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

BRCA genes : conserved regions and the potential effect of missense changes /

Ramirez, Christina J. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 76-87).
12

Characterization of evolutionarily conserved mammalian alternative splicing and alternative promoters /

Baek, Daehyun, January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 84-91).
13

Noncoding Elements: Evolution and Epigenetic Regulation

Seridi, Loqmane 09 March 2016 (has links)
When the human genome project was completed, it revealed a surprising result. 98% of the genome did not code for protein of which more than 50% are repeats— later known as ”Junk DNA”. However, comparative genomics unveiled that many noncoding elements are evolutionarily constrained; thus luckily to have a role in genome stability and regulation. Though, their exact functions remained largely unknown. Several large international consortia such as the Functional Annotation of Mammalian Genomes (FANTOM) and the Encyclopedia of DNA Elements (ENCODE) were set to understand the structure and the regulation of the genome. Specifically, these endeavors aim to measure and reveal the transcribed components and functional elements of the genome. One of the most the striking findings of these efforts is that most of the genome is transcribed, including non-conserved noncoding elements and repeat elements. Specifically, we investigated the evolution and epigenetic properties of noncoding elements. 1. We compared genomes of evolutionarily distant species and showed the ubiquity of constrained noncoding elements in metazoa. 2. By integrating multi-omic data (such as transcriptome, nucleosome profiling, histone modifications), I conducted a comprehensive analysis of epigenetic properties (chromatin states) of conserved noncoding elements in insects. We showed that those elements have distinct and protective sequence features, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. 3. I focused on the relationship between enhancers and repetitive elements. Using Cap Analysis of Gene Expression (CAGE) and RNASeq, I compiled a full catalog of active enhancers (a class of noncoding elements) during myogenesis of human primary cells of healthy donors and donors affected by Duchenne muscular dystrophy (DMD). Comparing the two time-courses, a significant change in the epigenetic landscape in DMD was observed that lead to global dysregulation of enhancers and associated repetitive elements.
14

Transcriptome Analysis Reveals Conserved Regulation of Triacylglycerol Biosynthetic Pathway in Seed and Non-Seed Tissues

Kilaru, Aruna 01 January 2013 (has links)
No description available.
15

Legal Entanglements in Place: Hul'q'umi'num' law, provincial jurisdiction and the protection of Hw'teshutsun, a Hul'q'umi'num' cultural landscape

Argan, Jennifer 09 December 2022 (has links)
In 2001, Cowichan Tribes successfully negotiated the protection of an important cultural landscape, preventing imminent logging and development through a treaty-related measures (TRM) agreement with British Columbia (BC), Canada and the Hul’qumi’num Treaty Group (HTG). This was the first land protection TRM in BC which protected 1700 hectares at Hw’teshutsun, located in the Cowichan Valley on southeast Vancouver Island, BC. The TRM followed the declaration of a “tribal preserve” by Cowichan Tribes (Cowichan Tribes, 2000a) and a ceremony between five Hul’q’umi’num’-speaking communities to share, “protect, preserve and maintain Hw’te shutsun for the use and benefit of present and future generations” (Cowichan Tribes, Stz’uminus First Nation, Halalt First Nation, Lyackson First Nation and Penelakut Tribe 2000). This protection TRM is notable as it is an exercise of provincial jurisdiction which attends to the cultural, rather than ecological, value of Hw’teshutsun: legislative actions undertaken through the TRM protect Hw’teshutsun in accordance with Hul’q’umi’num’ teachings. In effect, the TRM is an entanglement of Hul’q’umi’num’ and Canadian law which has resulted in the protection of an off-reserve Hul’q’umi’num’ cultural landscape – a green, forested area observable in satellite imagery amidst a territory that is over 85% privately owned and devastated by logging and urban development. In such a context, the work done by Cowichan Tribes leadership is a significant achievement, a successful assertion of their jurisdiction to protect a Hul’q’umi’num’ cultural landscape in accordance with their teachings. This thesis documents the work done by Cowichan Tribes in asserting their authority and jurisdiction at Hw’teshutsun through both their own legal pathways and in relation to municipal, provincial and federal governments to prevent logging and the construction of a dump and a race car track. Teachings shared by Cowichan Elders and knowledge keepers about Hw’teshutsun stem from an intimate knowledge of “place” (for examples of intimate relationships with place, see Basso 1996; Mohs 1994; Thom 2017; Charlton 2018; Thornton 2008), which is reflected in Hul’q’umi’num’ law (Morales 2014; McLay et al. 2008; Morales and Thom 2020). Through extensive work by Cowichan Tribes leadership, teachings about the integrity of the landscape – particularly quiet and seclusion around places within Hw’teshutsun – shaped exercises of provincial jurisdiction, protecting a large area through rather than typical mitigation strategies that seek to shrink Indigenous peoples’ relationships with the land to tiny, isolated sites. Understanding these legal entanglements opens possibilities for innovative governance that attends to Indigenous peoples’ teachings of places and their enactments of their own laws shaping the governance of shared landscapes. / Graduate
16

Functional Analysis and Characterization of Transporter of Putrescine and Spermidine (TOPAS1) in Phytophthora parasitica

Chakrabarti, Nilanjana 02 August 2017 (has links)
No description available.
17

IMPROVING SPEED OF MIXED-SIGNAL SIMULATION THROUGH MODEL REDUCTION BY REDUCING BRANCH EQUATIONS USING S3IS ELABORATION DATA STRUCTURE

VENKATARAMANI, HARISH 27 September 2005 (has links)
No description available.
18

Identifying Evolutionarily Conserved Protein Interaction Networks

Rivera, Corban G. 15 July 2005 (has links)
Our goal is to investigate protein networks conserved between different organisms. Given the protein interaction networks for two species and a list of homologous pairs of protein in the two species, we propose a model for measuring whether two subnetworks, one in each protein interaction network, are conserved. Our model separately measures the degree of conservation of the two subnetworks and the quality of the edges in each subnetwork. We propose an algorithm for finding pairs of networks, one in each protein interaction network, with high conservation and high quality. When applied to publicly-available protein-protein interaction data and gene sequences for baker's yeast and fruit fly, our algorithm finds many conserved networks with a high degree of functional enrichment. Using our method, we find many conserved protein interaction networks involved in functions such as DNA replication, protein folding, response to heat, protein serine/threonine phosphatase activity, kinase activity, and ATPase activity. / Master of Science
19

Investigation and characterisation of the genetic variation in the coding region of the glycine N-acyltransferase gene / Rencia van der Sluis

Van der Sluis, Rencia January 2015 (has links)
Thorough investigation of the glycine conjugation pathway has been neglected over the last 30 years. Environmental factors, nutrition, and the chronic use of medications are increasing the exposure of humans to benzoate and drugs that are metabolized to acyl-CoA intermediates. Glycine conjugation of mitochondrial acyl-CoAs, catalysed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterised in detail. Therefore, one of the objectives of this thesis was to develop a better understanding of glycine conjugation and its role in metabolism. In humans and animals a number of endogenous and xenobiotic organic acids are conjugated to glycine. Glycine conjugation has generally been assumed to be a detoxification mechanism, increasing the water solubility of organic acids in order to facilitate urinary excretion. However, recently it was proposed that the role of the amino acid conjugations, including glycine conjugation, is to regulate systemic levels of amino acids that are also utilised as neurotransmitters in the central nervous systems of animals. The glycine deportation hypothesis was based on the observation that, compared to glucuronidation, glycine conjugation does not significantly increase the water solubility of aromatic acids. A thorough review of the literature for this thesis showed that the major role of glycine conjugation, however, is to dispose of the end products of phenylpropionate metabolism. The review also introduced the new perspective that mitochondrial glycine conjugation prevents the accumulation of benzoate in the mitochondrial matrix by forming hippuric acid a less lipophilic conjugate that can be more readily transported out of the mitochondria. Although organic anion transporters can export benzoate from the matrix, this process would likely be futile because benzoic acid can simply diffuse back into the matrix. Hippurate, however, is significantly less lipophilic and therefore less capable of diffusing into the matrix. It is therefore not the transport out of the mitochondrial matrix that is facilitated by glycine conjugation, but rather the ability of the glycine conjugates to re-enter the matrix that is decreased. Lastly, glycine conjugation of benzoate also exacerbates the dietary deficiency of glycine in humans. Because the resulting shortage of glycine can negatively influence brain neurochemistry and the synthesis of collagen, nucleic acids, porphyrins, and other important metabolites, the risks of using benzoate as a preservative should not be underestimated. To date, no defect of the glycine conjugation pathway has been reported and this, together with the fact that GLYAT plays an important role in hepatic metabolism, suggests that this pathway is essential for survival. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development and mitochondrial energy metabolism. Significant interindividual variation exists in glycine conjugation capacity. The molecular basis for this variability is not known. The main aim of this thesis was to investigate and characterise the genetic variation in the coding region of the GLYAT gene. This was accomplished by firstly, investigating the influence of non-synonymous single nucleotide polymorphisms (SNPs) on the enzyme activity of a recombinant human GLYAT and secondly, by analysing the level of genetic variation in the coding region of the GLYAT gene using existing worldwide population data. To investigate the influence of non-synonymous SNPs in the GLYAT gene on the enzyme activity, a recombinant human GLYAT was prepared, and characterised. Site-directed mutagenesis was used to generate six variants of the enzyme (K16N; S17T; R131H; N156S; F168L; R199C). The variants were expressed, purified, and enzymatically characterised. The enzyme activities of the K16N, S17T and R131H variants were similar to that of the wild-type, whereas the N156S variant was more active, the F168L variant less active, and the R199C variant was inactive. The results showed that SNP variations in the human GLYAT gene can influence the kinetic properties of the enzyme. The genetic variation data of the human GLYAT open reading frame (ORF) available on public databases was investigated by formulating the hypothesis that due to the essential nature of the glycine conjugation pathway, the genetic variation in the ORF of the GLYAT gene should be low and that deleterious alleles will be found at low frequencies. Data from the i) 1000 Genome Project, ii) the HapMap Project, and iii) the Khoi-San/Bantu Sequencing Project was downloaded from available databases. Sequence data of the coding region of a small cohort of South African Afrikaner Caucasian individuals was also generated and included in the analyses. In the GLYAT ORF of the 1537 individuals analysed, only two haplotypes (S156 and T17S156) out of 14 haplotypes were identified in all populations as having the highest haplotype frequencies (70% and 20% respectively). The S156C199 and S156H131 haplotypes, which have a deleterious effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. The results of this study indicated that the GLYAT ORF is remarkably conserved, which supports the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. The findings presented in this thesis highlight the importance that future investigations should determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics. / PhD (Biochemistry), North-West University, Potchefstroom Campus, 2015
20

Investigation and characterisation of the genetic variation in the coding region of the glycine N-acyltransferase gene / Rencia van der Sluis

Van der Sluis, Rencia January 2015 (has links)
Thorough investigation of the glycine conjugation pathway has been neglected over the last 30 years. Environmental factors, nutrition, and the chronic use of medications are increasing the exposure of humans to benzoate and drugs that are metabolized to acyl-CoA intermediates. Glycine conjugation of mitochondrial acyl-CoAs, catalysed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterised in detail. Therefore, one of the objectives of this thesis was to develop a better understanding of glycine conjugation and its role in metabolism. In humans and animals a number of endogenous and xenobiotic organic acids are conjugated to glycine. Glycine conjugation has generally been assumed to be a detoxification mechanism, increasing the water solubility of organic acids in order to facilitate urinary excretion. However, recently it was proposed that the role of the amino acid conjugations, including glycine conjugation, is to regulate systemic levels of amino acids that are also utilised as neurotransmitters in the central nervous systems of animals. The glycine deportation hypothesis was based on the observation that, compared to glucuronidation, glycine conjugation does not significantly increase the water solubility of aromatic acids. A thorough review of the literature for this thesis showed that the major role of glycine conjugation, however, is to dispose of the end products of phenylpropionate metabolism. The review also introduced the new perspective that mitochondrial glycine conjugation prevents the accumulation of benzoate in the mitochondrial matrix by forming hippuric acid a less lipophilic conjugate that can be more readily transported out of the mitochondria. Although organic anion transporters can export benzoate from the matrix, this process would likely be futile because benzoic acid can simply diffuse back into the matrix. Hippurate, however, is significantly less lipophilic and therefore less capable of diffusing into the matrix. It is therefore not the transport out of the mitochondrial matrix that is facilitated by glycine conjugation, but rather the ability of the glycine conjugates to re-enter the matrix that is decreased. Lastly, glycine conjugation of benzoate also exacerbates the dietary deficiency of glycine in humans. Because the resulting shortage of glycine can negatively influence brain neurochemistry and the synthesis of collagen, nucleic acids, porphyrins, and other important metabolites, the risks of using benzoate as a preservative should not be underestimated. To date, no defect of the glycine conjugation pathway has been reported and this, together with the fact that GLYAT plays an important role in hepatic metabolism, suggests that this pathway is essential for survival. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development and mitochondrial energy metabolism. Significant interindividual variation exists in glycine conjugation capacity. The molecular basis for this variability is not known. The main aim of this thesis was to investigate and characterise the genetic variation in the coding region of the GLYAT gene. This was accomplished by firstly, investigating the influence of non-synonymous single nucleotide polymorphisms (SNPs) on the enzyme activity of a recombinant human GLYAT and secondly, by analysing the level of genetic variation in the coding region of the GLYAT gene using existing worldwide population data. To investigate the influence of non-synonymous SNPs in the GLYAT gene on the enzyme activity, a recombinant human GLYAT was prepared, and characterised. Site-directed mutagenesis was used to generate six variants of the enzyme (K16N; S17T; R131H; N156S; F168L; R199C). The variants were expressed, purified, and enzymatically characterised. The enzyme activities of the K16N, S17T and R131H variants were similar to that of the wild-type, whereas the N156S variant was more active, the F168L variant less active, and the R199C variant was inactive. The results showed that SNP variations in the human GLYAT gene can influence the kinetic properties of the enzyme. The genetic variation data of the human GLYAT open reading frame (ORF) available on public databases was investigated by formulating the hypothesis that due to the essential nature of the glycine conjugation pathway, the genetic variation in the ORF of the GLYAT gene should be low and that deleterious alleles will be found at low frequencies. Data from the i) 1000 Genome Project, ii) the HapMap Project, and iii) the Khoi-San/Bantu Sequencing Project was downloaded from available databases. Sequence data of the coding region of a small cohort of South African Afrikaner Caucasian individuals was also generated and included in the analyses. In the GLYAT ORF of the 1537 individuals analysed, only two haplotypes (S156 and T17S156) out of 14 haplotypes were identified in all populations as having the highest haplotype frequencies (70% and 20% respectively). The S156C199 and S156H131 haplotypes, which have a deleterious effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. The results of this study indicated that the GLYAT ORF is remarkably conserved, which supports the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. The findings presented in this thesis highlight the importance that future investigations should determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics. / PhD (Biochemistry), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0851 seconds