1 |
Quantum Well Intermixed Two Section Superluminescent DiodesLeeson, Nicholas January 2008 (has links)
<p>Superluminescent diodes have become important for various applications, such as for biomedical imagining, due to their broad spectral width and high power.</p><p>This thesis demonstrates two-section superluminescent diodes fabricated using quantum well intermixing with strained Ga_0.75sln_0.25As quantum wells, grown on a GaAs substrate. A 100 nm capping layer of Ga_0.515In_0.485P grown at low temperature and having an excess of phosphorus, was removed from one section of the device to produce a relative bandgap shift between sections after rapid thermal annealing. The devices emitted at a wavelength of ~1μm with 60 nm of spectral width, and up to 38 mW of power at 20°C, depending on the currents applied to each section.</p><p>The combination of the spectral output from the two quantum well intermixed sections resulted in the broad spectral width. Angled facets at 7 ° were used to prevent the device from lasing. Additional power improvements were seen following the thermal anneal when a SiO2 capping layer was used on both sections. Depending on the applied currents, each section required 1.5 V to 3.0 V; and failed at 5.3 V ± 0.5 V.</p> / Thesis / Master of Applied Science (MASc)
|
2 |
Development and Engineering Application of Flat Shell Element by the Vector Form Intrinsic Finite Element MethodChung, Pei-yin 30 August 2010 (has links)
Abstract
This study focuses on the development of a plate-shell element using the vector form intrinsic finite element (VFIFE) method to analyze the structural behavior of thin shell structure subjected to various exerting forces. The shell element employed here is the flat three-node triangular shell element proposed by Bathe and Ho, which is obtained by superimposing CST (constant strain triangle) element with DKT (discrete Kirchhoff theory) triangular plate element. The nodal coordinates, displacements, rotations, and the motion equations of the structure are defined in a fixed global set of coordinates. The strains of the shell element, the element internal nodal forces and the element stiffness matrix are defined in terms of co-rotational coordinates, which are corresponding to the configuration of the shell element. Based on the co-rotational coordinate principle, the nodal displacement between two adjacent time steps can be separated into displacements induced from rigid body motion or deformation, and the incremental internal nodal forces can also be obtained. Finally, following the Newton's 2nd law, the equations of motion can be built to analyze the dynamic responses of thin shell structures.
The theory derived in this study, were further verified to be able to simulate the behavior of thin shell structures subjected to both static and dynamic loadings. This new analytical model was proved to be an effective tool that can be an alternertive to traditional finite element procedure to solve for complicated engineering problems in thin shell structures.
|
3 |
Constitutive Modeling of Creep in Leaded and Lead-Free Solder Alloys Using Constant Strain Rate Tensile TestingStang, Eric Thomas January 2018 (has links)
No description available.
|
Page generated in 0.0763 seconds