• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 248
  • 86
  • 32
  • 30
  • 26
  • 22
  • 17
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 520
  • 246
  • 181
  • 109
  • 89
  • 87
  • 67
  • 56
  • 50
  • 44
  • 43
  • 41
  • 40
  • 39
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

A comparison of methane dynamics between wetlands constructed for wastewater treatment and a natural sedgeland in South Australia

Muller, Kerri Louise. January 2001 (has links) (PDF)
"Figures, tables and the appendices appear in the volume II". Bibliography: leaves 130-152.
172

Nutrient Removal and Plant Growth in a Subsurface Flow Constucted Wetland in Brisbane, Australia

Browning, Catharine, n/a January 2003 (has links)
One of the major water quality issues affecting waterways is eutrophication. Controlling the input of nutrients from municipal wastewater treatment plants (WTP’s) is a significant step in reducing eutrophication. Tertiary wastewater treatment for water quality improvement in particular Biological Nutrient Removal (BNR) is often expensive to construct with high maintenance costs. Constructed wetlands (CWs) offer an alternative wastewater treatment and have been used successfully worldwide to treat various types of wastewater. This study investigated the effectiveness of the Oxley Creek horizontal subsurface flow (SSF) CW for tertiary municipal wastewater treatment and the suitability of four native macrophyte species, Baumea articulata, Carex fascicularis, Philydrum lanuginosum and Schoenoplectus mucronatus. The investigation consisted of four main components: 1) Plants: monitoring plant establishment, growth, impact of cropping, gravel size, nutrient content and storage for the four macrophyte species trialed; 2) Water quality - effluent treatment: monitoring water quality and quantity entering and leaving the wetland to determine wastewater treatment; 3) Organic matter: accumulation of organic carbon within the wetland cells for the different gravel sizes (5mm and 20mm) and 4) Mass balance: combining nutrient storage by macrophytes with wastewater nutrient removal to determine proportion of nutrient removal by plant uptake. The Oxley horizontal SSF CW is situated at the Oxley Creek WTP in Brisbane (South- East), Queensland, Australia which has a sub-tropical climate. The experimental design involved four different substrate treatments: Cell A new 5mm gravel, Cells B and C old 20mm gravel and Cell D old 5mm gravel. Cells B, C and D had been operational since 1995 whereas Cell A had been in use since 2000. The wetland received secondary treated effluent direct from the Oxley Creek WTP at an average flow rate of 8L/min with a median hydraulic loading rate (HLR) of 0.12m/day and a hydraulic retention time (HRT) of 2 to 3 days. Each cell consisted of three gravel sections (Section 1 to 3) separated by 1m wide open water sections. Gravel Sections 2 and 3 were planted out with the four macrophyte species in October 2000, Section 1 remained unplanted. Plant health and leaf height was monitored to assess plant establishment and growth. Investigations into plant establishment and growth demonstrated that Carex was most suitable. Carex achieved the highest maximum leaf height and was not affected by pests and disease unlike Schoenoplectus and Philydrum. Above ground biomass was cropped in May and August 2001, with biomass of cropped material measured on both occasions. Plant health and re-growth following cropping of above ground biomass in May and August 2001 demonstrated that cropping retarded regrowth of Schoenoplectus and Philydrum. Carex and Baumea recovered quickest following cropping, with Carex achieving leaf height prior to cropping within 6 months. Proportion of biomass contained above and below ground was measured by collecting biomass samples three times over 9 months and dividing into plant components (roots, rhizomes, leaves, flowers and stems). Investigations into the proportion of above and below ground components indicated that >80% of biomass is contained above ground. Therefore cropping above ground biomass would potentially remove a significant proportion of nutrient storage from the CW. The results indicated that the ideal time for cropping was in spring/summer when plants are flowering particularly for Philydrum, whose flowering stems comprised 40% of total plant biomass. Flowering stems of Philydrum could potentially have a commercial use as a cut flower. Nutrient content of the four species in each cell was measured for individual plant components when first planted and after three (summer) and six (autumn) months growth. This was combined with biomass data to quantify nutrient bioaccumulation (nitrogen and phosphorus) by the four species in each cell. In terms of ability to bioaccumulate nitrogen and phosphorus, measurements of nutrient content and storage indicated that all four species were suitable. Nutrient storage was highest for Baumea and Carex. However high nutrient content may make the macrophytes more susceptible to pest and disease attack as found in this study for Philydrum and Schoenoplectus. Nutrient storage was highest in Cell A (new 5mm gravel) as a result of higher biomass achieved in this cell. The cropping and nutrient storage experiments indicated that Carex was the most suitable species for use in SSF CWs. Carex achieved the highest nutrient storage and had the fastest regrowth following cropping. Organic carbon accumulation between gravel particles measured as the proportion of material lost at 500oC was determined for gravel samples collected from each section for all four cells at 10cm depth increments (0-10cm, 10-20cm and 20-30cm). Investigations into organic carbon accumulation within the gravel substrate showed that organic accumulation was higher in the planted sections particularly for cells that had previously been planted with Phragmites australis. Organic accumulation was highest in the top 20cm of the gravel, which can be attributed to litter fall and root material. The effect of gravel size on plant growth, biomass, root depth and organic accumulation was assessed throughout the study. Investigations indicated that gravel size did not appear to affect biomass, maximum root penetration, re-growth following cropping and organic accumulation. Water quality from the inlet and outlet of each cell was measured fortnightly over 12 months (May 2001 to May 2002). Water quantity (HLR) was measured weekly using tipping buckets located at the inlet and outlet of each cell. Water quality and quantity were combined to investigate the nutrient removal efficiency of the wetland. The Oxley wetland was highly effective in reduction of TSS (<2mg/L) and COD (<30mg/L). Principal TSS and COD removal mechanism was physical with the first gravel section acting as a filter removing the majority of particulate material. Average loading rates to the wetland were 7.1 kg/ha/d PO4-P, 14 kg/ha/d NH4-N and 5.4 kg/ha/d NOx-N. Average daily mass removal rates ranged from 7.3 kg/ha NH4-N in Cell D to 4.6 kg/ha in Cell C (i.e. 37%-22% removal efficiency respectively); 5.2 kg/ha NOx-N in Cell C to 1.3 kg/ha in Cell A (i.e. 75%-22% removal efficiency) and 0.8 kg/ha PO4-P in Cell A to 0.1 kg/ha in Cell C (i.e. 10%-1% removal efficiency). Removal efficiency was calculated on a loads basis. Insufficient retention times (2-3 days based on tracer study) and anaerobic conditions (<1mg/L) limited further nitrogen removal. Negligible phosphorus removal for all cells was attributed to short retention time and likelihood of phosphorus adsorption being close to capacity. Investigation into the proportion of nutrient removal attributed to plant uptake demonstrated that nutrient uptake and storage in plant biomass accounted for <12% TN and <5% TP. This research project has provided several useful outcomes that can assist in future guidelines for designing effective SSF CWs in the subtropics/tropics. Outcomes include the importance of maintaining an adequate water level during the initial establishment phase. Maximising effluent treatment by pre-treatment of wastewater prior to entering SSF CWs to enable ammonia to be converted to nitrate and ensuring adequate hydraulic retention time. Carex fascicularis was the most suitable species particularly where harvesting regimes are employed. Philydrum flowering stems could be used as a cut flower in the florist trade.
173

Discourse and Power: A Study of Change in the Managerialised University in Australia

Lines, Robyn Laraine, robyn.lines@rmit.edu.au January 2005 (has links)
The literature concerning work identities within universities is limited and focussed upon the ways academic staff construct their identities and the impacts these have upon their approaches to change. Similar studies for the range of differentiated roles that characterise the newly managerialised university are not available. The first stage of the research, therefore, was to develop a categorisation of the ways in which senior managers, line managers, support staff and academic staff construct their identities at work. This categorisation was created by bringing together the experiences of change of fifty three staff from five similar Australian universities, reported in interviews, with a review of the discourses widely available within the university sector (Deetz 1992; du Gay 1996a; Knights & Morgan 1991; Marginson 2000; Readings 1996) to produce thirteen different classifications associated with different roles. These categories described as case study one provide an initial framework for making sense of the different viewpoints expressed by staff in interviews and a language for understanding w hat particular actions might mean to the organisational members making them. As such it provides a starting point or tool for analysis and makes an original contribution to understanding change within universities. The second stage of this research examined the dynamics of a teaching change project and the interactions between differently constructed work identities it entailed. This was undertaken through an ethnographic study of a change project in process. The ethnography was supplemented by interviews with participants at the conclusion of the project. The analysis of the ethnography combined the first theoretical focus on constructed identity with concepts of power and their forms within organisations (Foucault 1998; Clegg 1989a; Callon 1986) to take account of the hierarchical organisation of the university and the differentiated organisational roles of participants in the change project.
174

The Box-Cox Transformation:A Review

曾能芳, Zeng, Neng-Fang Unknown Date (has links)
The use of transformation can usually simplify the analysis of data, especially when the original observations deviate from the underlying assumption of linear model. Box-Cox transformation receives much more attention than others. In this dissertation,. we will review the theory about the estimation, hypotheses test on transformation parameter and about the sensitivity of the linear model parameters in Box-Cox transformation. Monte Carlo simulation is used to study the performance of the transformations. We also display whether Box-Cox transformation make the transformed observations satisfy the assumption of linear model actually.
175

A comparison of methane dynamics between wetlands constructed for wastewater treatment and a natural sedgeland in South Australia / Kerri Louise Muller.

Muller, Kerri Louise January 2001 (has links)
"Figures, tables and the appendices appear in the volume II". / Bibliography: leaves 130-152. / 2 v. (152 leaves, [5] leaves of plates; [75] leaves) : ill. (some col.), col. maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Botany, 2001
176

Effects of a pulsing hydroperiod on a created riparian river diversion wetland

Fink, Daniel Francis, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 206-221).
177

Effect of plant surface area on organic carbon removal in wetlands

Kuehn, Elaine Jinx 30 November 1994 (has links)
This study investigated the effect of plant surface area (plant density) on the efficiency of organic carbon removal in a bench-scale constructed wetland. Constructed wetlands are commonly assumed to be biofilm reactors in which organic carbon removal occurs primarily through sedimentation and aerobic degradation by attached microbial biofilms. In conventional biofilm reactors, aerobic degradation of organic carbon is proportional to the amount of surface area for microbial attachment, provided that sufficient oxygen is available. In contrast, current design equations for constructed wetlands assume that the amount of surface area is not an important parameter. A bench-scale simulation of a constructed wetland was conducted, using bulrushes planted at varying plant densities in soil with a free water surface depth of about 0.27 m. The carbon source was diluted ENSUR (TM). Total organic carbon (TOC) removal was measured. Concentration of TOC was correlated with biochemical oxygen demand (BOD). Tests were conducted in conditions of light and dark, and under two different carbon loadings. Performance of bulrushes was compared with that of inert acrylic rods. The rate of carbon removal by mature bulrushes was found to increase with increasing plant density until oxygen became depleted. Higher densities degraded carbon at rates much faster than those predicted by current design equations. Young bulrushes degraded carbon at faster rates than mature bulrushes. Once oxygen was depleted, rates of degradation were reduced to rates anticipated by current models. When plant density was 15% or greater, oxygen became depleted in less than 6 hours. Removal efficiency was greater at higher loadings (70 mg/l BOD) than at lower loadings (25 mg/l BOD). Bulrushes performed significantly better than inert rods, sometimes by a full order of magnitude. The microbial community on the bulrushes appeared to be more complex and robust than that on the rods. Also, the presence of light did not significantly increase degradation rates for the bulrushes but was significant for the rods. The microbial community on the rods contained a larger proportion of epiphytic algae. The presence of light did result is greater overall efficiency of removal for both bulrush and rods. Currently, a major drawback of constructed wetlands in wastewater treatment has been their demand for large areas of land. This study suggests that it would be possible to reduce the land area requirements for constructed wetlands for both carbon removal and nitrification/denitrification provided designs gave more consideration to oxygen supply. Using current designs, a retention time of 4-8 days typically results in 70% BOD removal. This experiment suggests that wetlands with a retention time of about 1 day could provide the same performance if additional oxygen were supplied. / Graduation date: 1995
178

STUDY OF BACTERIAL COMMUNITIES : – A WASTEWATER TREATMENT PERSPECTIVE

Rodriguez Caballero, Adrian January 2011 (has links)
In this thesis, the application of molecular microbiology methods to understand wastewater treatment bio-reactions is described. Two different wastewater treatment systems were chosen for the experimental work. Firstly; the activated sludge processes at two different facilities in Sweden (Västerås and Eskilstuna) were investigated and compared in a context where low temperatures can affect the efficiency of the nitrogen removal performance in terms of nitrification. Initially, fluorescence in situ hybridization (FISH) was utilised in order to quantify some of the species involved in ammonia and nitrite oxidation at Västerås, providing information on how the different communities react to decreasing temperatures. Then, the polymerase chain reaction (PCR), cloning-sequencing method was employed in order to study the composition of the ammonia oxidizing bacteria (AOB) community at the same two wastewater treatment plants (WWTPs). Secondly; the potential use of constructed wetlands for the treatment of winery wastewater was studied. High ethanol concentration artificial wastewater with and without inorganic nutrients (nitrates and phosphates) was fed in a set of pilot-scale constructed wetlands. Pollutant removal performance and enzyme activity tests were carried out. Additionally, the bacterial community structure was investigated by means of denaturing gradient gel electrophoresis (DGGE). In the first set of studies it was shown that the AOB population which plays a major role in nitrifying reactors presented a seasonal shift and a higher diversity at Västerås during winter time, while the nitrification performance maintained stable levels and the ammonia removal efficiency increased. Thus, the higher ammonia removal efficiency at Västerås could be related to the diversity of the AOB population composition. Lastly, when constructed wetlands were in focus, the differential effects of ethanol and nutrients over the chemical oxygen demand (COD) removal performance were proven. In fact, the addition of nutrients on one of the experimental wetlands increased the COD (ethanol) removal and supported the maintenance of a bacterial population similar to the control wetland (no ethanol added). In conclusion, both studies proved a strong relationship between process performance (pollution removal) and the dynamics of the bacterial communities involved.
179

Performance of a Surface-Flow Constructed Wetland Treating Landfill Surface-Water Runoff

Hick, Justin 11 June 2013 (has links)
Landfills are a major potential source of groundwater and surface-water contamination. The compounds that can leach from landfilled materials include dissolved organic matter, inorganic macrocomponents, heavy metals, and xebobiotic organic compounds. Landfill surface-water runoff poses a threat to the environment due to high mobility, but has not been rigorously characterized with regards to common pollutants found in landfills. It is well documented that constructed wetlands can serve as an effective treatment option for many pollutants found in landfills. The Napanee Landfill has constructed a wetland in order to treat surface-water runoff coming off the landfill. The objectives of this study were to: 1) characterize the water chemistry of surface-water runoff for an inactive landfill; 2) evaluate the treatment potential for the constructed wetland system at the Napanee Landfill; and, 3) recommend design, maintenance, and operative improvements to enhance effluent water quality. The analysis of the landfill surface-water runoff entering the Napanee Landfill constructed wetland included the pollutants nitrate, ammonia, sulphate, phosphorus, and chloride. The median inflow and outflow concentrations for all of the observed pollutants did not exceed Canadian federal or provincial water quality guidelines. There were sampling days where ammonia, phosphorus, and chloride exceeded guidelines at the inflow and days where ammonia and chloride exceeded guidelines at the outflow. The only pollutant that saw a statistically significant decrease in concentrations was sulphate, with a change of 38% from the inflow to the outflow. Other changes of note were nitrate and phosphorus concentrations increasing by 50% and 23% respectively from the inflow to the outflow. There are a variety of improvements that can be made to the Napanee Landfill constructed wetland that would increase the treatment efficiency of ammonia. Incorporating a vertical-flow wetland would increase available surface area for nitrifying bacteria growth and would provide more oxygen for nitrification processes; both would increase the potential for significant ammonia treatment. Overall, the concentrations of the pollutants found in the surface-water runoff coming off of the Napanee Landfill constructed wetland did not pose a significant threat to the environment at the time of sampling and treatment processes were only successful in reducing sulphate pollutant concentrations.
180

Flow characteristics of constructed wetlands : tracer studies of the hydraulic regime

Stairs, Darrin B. 28 July 1993 (has links)
Treatment efficiency in a constructed wetland is related in part to the amount of time that a wastewater remains in the system. Current design methods idealize the system as a plug flow reactor and use a "residence time" based solely on the volume of the cell and the flow rate. Under this assumption, every element of wastewater entering the wetland cell experiences the same residence time. It is understood that this idealization ignores the existence of longitudinal dispersion, short circuiting and stagnant regions within the wetland cell. The result of these phenomena is a distribution of residence times. In other words, portions of the effluent exit the cell earlier than predicted, resulting in undertreatment, and portions exit late, resulting in excess treatment. The average concentration of treated wastewater at the outlet is a function of this distribution and the reaction kinetics associated with the waste. The overall effect of a distribution of residence times is reflected in a reduction of treatment efficiency at the outlet. Hydraulic regimes of constructed wetland systems were investigated at a pilot project site providing tertiary treatment of a pulp mill wastewater. Two vegetation types, bulrush and cattail, were investigated and compared to nonvegetated and rock-filter cells with identical configurations. Tracer studies used a fluorescent dye and were performed over the course of a year. Dye was input as a pulse at the inlet end of the cell and sampled over time at the outlet end to obtain concentration breakthrough curves. From these curves, time to peak, actual mean detention times, degree of dispersion, and extent of dead space were calculated, as well as predicted treatment efficiency. Results indicated varying degrees of dispersion, short circuiting, and dead space in the individual cells. Analysis of the residence time distributions provided estimates of the "active" volume of the treatment cell and the degree of short circuiting in the system. Effective volume of the planted cells ranged from 15 to 25% of full volume. Early arrivals of the peaks of the distributions, indicative of short circuiting, ranged from 30% to 80% of the theoretical detention times. A first order treatment model and a kinetic coefficient, k, were assumed, and corresponding treatment efficiencies were compared to the theoretical treatment of an ideal plug flow reactor. Reduced treatment efficiencies for the planted systems ranged from 2 to 20 %, by this estimation. Many references attempt to analyze wastewater treatment systems by refering to two models: dispersed plug flow and an approximation of tank-in-series. These models were investigated as potential descriptions of the hydraulic regime present in constructed wetlands. Residence time distributions of the constructed wetlands in this study indicated flow was not exclusively dispersed plug flow. This simplified model does not account for the exchange of material with "dead" space in the wetland cell. The data suggest a combination model of dispersed plug flow with a transient storage zone component may be more appropriate. / Graduation date: 1994

Page generated in 0.0815 seconds