21 |
Optimisation des temps de calculs dans le domaine de la simulation par éléments discrets pour des applications ferroviaires.Hoang, Thi Minh Phuong 05 December 2011 (has links) (PDF)
La dégradation géométrique de la voie ballastée sous circulation commerciale nécessite des opérations de maintenance fréquentes et onéreuses. La caractérisation du comportement des procédés de maintenance comme le bourrage, la stabilisation dynamique, est nécessaire pour proposer des améliorations en terme de méthode, paramétrage pour augmenter la pérennité des travaux. La simulation numérique d'une portion de voie soumise à un bourrage ou une stabilisation dynamique permet de comprendre les phénomènes physiques mis en jeu dans le ballast. Toutefois, la complexité numérique de ce problème concernant l'étude de systèmes à très grand nombre de grains et en temps de sollicitation long, demande donc une attention particulière pour une résolution à moindre coût. L'objectif de cette thèse est de développer un outil de calcul numérique performant qui permet de réaliser des calculs dédiés à ce grand problème granulaire moins consommateur en temps. La méthodologie utilisée ici se base sur l'approche Non Smooth Contact Dynamics (NSCD) avec une discrétisation par Éléments Discrets (DEM). Dans ce cadre, une méthode de décomposition de domaine (DDM) alliée à une parallélisation adaptée en environnement à mémoire partagée utilisant OpenMP sont appliquées pour améliorer l'efficacité de la simulation numérique.
|
22 |
Prise en compte de l’usure dans la modélisation du comportement sous charge des engrenages roues et vis tangentes / Modelling the loaded behavior of worm gears, taking the wear into accountJbily, Dalia 22 April 2016 (has links)
Les engrenages roues et vis sans fin sont une solution avantageuse pour transmettre le couple entre des axes perpendiculaires non concourants. Ces engrenages offrent une solution simple et efficace en terme de coût dans les applications de transmission de puissance, où un grand rapport de réduction est nécessaire, en comparaison avec les engrenages classiques à axes parallèles qui nécessitent normalement deux ou trois étapes pour obtenir les mêmes réductions avec une augmentation conséquente de complexité et du nombre de pièces. L’usure de surface est un des modes de défaillance observés dans la vie des engrenages roues et vis sans fin qui influe sur la portée de contact, les caractéristiques de transmission et le bruit résultant. La première étape de ces travaux est la mise au point d’un modèle numérique pour étudier le comportement quasi statique des engrenages roues et vis sans fin avec une roue en bronze et une vis en acier. Le modèle est basé sur la résolution des équations de compatibilité des déplacements ainsi que sur la méthode des coefficients d’influence. Les effets globaux de flexion et les effets locaux de contact ont été séparés. Les effets de contact ont été obtenus par la théorie de Boussinesq. Les coefficients de flexion sont estimés par la combinaison d’un calcul Éléments Finis et des fonctions d’interpolation, permettant d’une part de prendre en compte l’environnement de l'engrenage (la géométrie des arbres, des jantes et des voiles, l’emplacement des roulements,...) et d’autre part de réduire significativement les temps de calculs. Dans une seconde étape, une méthodologie est proposée pour modéliser l’usure de la surface de dent de la roue. Le modèle de contact quasi-statique de la répartition des charges est combiné avec un modèle d’usure d’Archard. Ce modèle suppose que la profondeur d’usure est directement proportionnelle à la pression de contact et à la distance de glissement et inversement proportionnelle à la dureté du matériau. Cette loi d’usure est modifiée pour prendre en compte l’influence des conditions de lubrification en utilisant un coefficient d’usure local, dépendant de l’épaisseur du film lubrifiant, rapportée à l’amplitude des rugosités des surfaces. L’enlèvement de matière par l’usure du flanc de la roue influe sur la répartition des pressions et donc les modifications de la géométrie des dents doivent être incluses dans la prédiction de l’usure. Le calcul des pressions de contact est ainsi mis à jour pour tenir compte des changements de géométrie. Enfin, pour valider le modèle développé des comparaisons du modèle avec des résultats expérimentaux issus de la bibliographie ont été effectuées. / Worm gears are one of the technical devices for transmitting torque between spatial crossed axes. They provide a simple and cost effective solution in power transmission applications, where a high reduction ratio is required. Comparable conventional parallel axis gearing would normally require two or three stages to achieve the same reduction, with a consequent increase in complexity and number of parts. Surface wear is one of the failure modes observed in life worm gear sets which affects the contact patterns, the other transmission characteristics and the resultant noise. The first step of this work is the development of a numerical model to study provide the quasi-static behavior of worm gears with bronze wheel and steel worm. The model is based on solving of the equation of displacement compatibility and the influence coefficient method. The global effects of bending and local effects of contact are separated. The contact effects are obtained with the theory of Boussinesq. Bending effects are estimated by the combination of one standard FEM computation and interpolation functions. These methods allow, on the one hand, to take into account the environment of the gear (shaft shape, rim, web, bearing location ...) and on the other to reduce significantly the computation time. In a second step, a methodology is proposed for predicting the wear of the wheel tooth surface. In this process, a quasi-static contact model of the load distribution is combined with Archard's wear model. This model assumes that the wear depth is directly proportional to the contact pressure and sliding distance and inversely proportional to the hardness of the material. The wear law is modified to take into account the influence of the lubrication conditions using a local wear coefficient, depending on the lubricant film thickness, relative to the amplitude of surface roughness. Removal of material by wear on the wheel flank affects the pressure distribution, therefore the changes in teeth must be included in the prediction of wear. The calculation of contact pressures must also be updated to take into account the modification of the gear flank geometry. The last step concerns the validation of the numerical. Comparisons have been carried out between the model results and experimental ones issued from the bibliography.
|
23 |
Numerical Methods for Modeling Dynamic Features Related to Solid Body Motion, Cavitation, and Fluid Inertia in Hydraulic MachinesZubin U Mistry (17125369) 12 March 2024 (has links)
<p dir="ltr">Positive displacement machines are used in various industries spanning the power spectrum, from industrial robotics to heavy construction equipment to aviation. These machines should be highly efficient, compact, and reliable. It is very advantageous for designers to use virtual simulations to design and improve the performance of these units as they significantly reduce cost and downtime. The recent trends of electrification and the goal to increase power density force these units to work at higher pressures and higher rotational speeds while maintaining their efficiencies and reliability. This push means that the simulation models need to advance to account for various aspects during the operation of these machines. </p><p dir="ltr">These machines typically have several bodies in relative motion with each other. Quantifying these motions and solving for their effect on the fluid enclosed are vital as they influence the machine's performance. The push towards higher rotational speeds introduces unwanted cavitation and aeration in these units. To model these effects, keeping the design evaluation time low is key for a designer. The lumped parameter approach offers the benefit of computational speed, but a major drawback that comes along with it is that it typically assumes fluid inertia to be negligible. These effects cannot be ignored, as quantifying and making design considerations to negate these effects can be beneficial. Therefore, this thesis addresses these key challenges of cavitation dynamics, body dynamics, and accounting for fluid inertia effects using a lumped parameter formulation.</p><p dir="ltr">To account for dynamics features related to cavitation, this thesis proposes a novel approach combining the two types of cavitation, i.e., gaseous and vaporous, by considering that both vapor and undissolved gas co-occupy a spherical bubble. The size of the spherical bubble is solved using the Rayleigh-Plesset equation, and the transfer of gas through the bubble interface is solved using Henry's Law and diffusion of the dissolved gas in the liquid. These equations are coupled with a novel pressure derivative equation. To account for body dynamics, this thesis introduces a novel approach for solving the positions of the bodies of a hydraulic machine while introducing new methods to solve contact dynamics and the application of Elasto Hydrodynamic Lubrication (EHL) friction at those contact locations. This thesis also proposes strategies to account for fluid inertia effects in a lumped parameter-based approach, taking as a reference an External Gear Machine. This thesis proposes a method to study the effects of fluid inertia on the pressurization and depressurization of the tooth space volumes of these units. The approach is based on considering the fluid inertia in the pressurization grooves and inside the control volumes with a peculiar sub-division. Further, frequency-dependent friction is also modeled to provide realistic damping of the fluid inside these channels.</p><p dir="ltr">To show the validity of the proposed dynamic cavitation model, the instantaneous pressure of a closed fluid volume undergoing expansion/compression is compared with multiple experimental sources, showing an improvement in accuracy compared to existing models. This modeling is then further applied to a gerotor machine and validated with experiments. Integrating this modeling technique with current displacement chamber simulation can further improve the understanding of cavitation in hydraulic systems. Formulations for body dynamics are tested on a prototype Gerotor and Vane unit. For both gerotor and vane units, comparisons of simulation results to experimental results for various dynamic quantities, such as pressure ripple, volumetric, and hydromechanical efficiency for multiple operating conditions, have been done. Extensive validation is performed for the case of gerotors where shaft torque ripple and the motion of the outer gear is experimentally validated. The thesis also comments on the distribution of the different torque loss contributions. The model for fluid inertia effects has been validated by comparing the lumped parameter model with a full three-dimensional Navier Stokes solver. The quantities compared, such as tooth space volume pressures and outlet volumetric flow rate, show a good match between the two approaches for varying operating speeds. A comparison with the experiments supports the modeling approach as well. The thesis also discusses which operating conditions and geometries play a significant role that governs the necessity to model such fluid inertia effects in the first place.</p>
|
Page generated in 0.0858 seconds