1 |
A probabilistic similarity framework for content-based image retrieval /Aksoy, Selim. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 245-272).
|
2 |
Techniques For Boosting The Performance In Content-based Image Retrieval SystemsYu, Ning 01 January 2011 (has links)
Content-Based Image Retrieval has been an active research area for decades. In a CBIR system, one or more images are used as query to search for similar images. The similarity is measured on the low level features, such as color, shape, edge, texture. First, each image is processed and visual features are extract. Therefore each image becomes a point in the feature space. Then, if two images are close to each other in the feature space, they are considered similar. That is, the k nearest neighbors are considered the most similar images to the query image. In this K-Nearest Neighbor (k-NN) model, semantically similar images are assumed to be clustered together in a single neighborhood in the high-dimensional feature space. Unfortunately semantically similar images with different appearances are often clustered into distinct neighborhoods, which might scatter in the feature space. Hence, confinement of the search results to a single neighborhood is the latent reason of the low recall rate of typical nearest neighbor techniques. In this dissertation, a new image retrieval technique - the Query Decomposition (QD) model is introduced. QD facilitates retrieval of semantically similar images from multiple neighborhoods in the feature space and hence bridges the semantic gap between the images’ low-level feature and the high-level semantic meaning. In the QD model, a query may be decomposed into multiple subqueries based on the user’s relevance feedback to cover multiple image clusters which contain semantically similar images. The retrieval results are the k most similar images from multiple discontinuous relevant clusters. To apply the benifit from QD study, a mobile client-side relevance feedback study was conducted. With the proliferation of handheld devices, the demand of multimedia information retrieval on mobile devices has attracted more attention. A relevance feedback information retrieval process usually includes several rounds of query refinement. Each round incurs exchange of tens of images between the mobile device and the server. With limited wireless bandwidth, this process can incur substantial delay making the system unfriendly iii to use. The Relevance Feedback Support (RFS) structure that was designed in QD technique was adopted for Client-side Relevance Feedback (CRF). Since relevance feedback is done on client side, system response is instantaneous significantly enhancing system usability. Furthermore, since the server is not involved in relevance feedback processing, it is able to support thousands more users simultaneously. As the QD technique improves on the accuracy of CBIR systems, another study, which is called In-Memory relevance feedback is studied in this dissertation. In the study, we improved the efficiency of the CBIR systems. Current methods rely on searching the database, stored on disks, in each round of relevance feedback. This strategy incurs long delay making relevance feedback less friendly to the user, especially for very large databases. Thus, scalability is a limitation of existing solutions. The proposed in-memory relevance feedback technique substantially reduce the delay associated with feedback processing, and therefore improve system usability. A data-independent dimensionality-reduction technique is used to compress the metadata to build a small in-memory database to support relevance feedback operations with minimal disk accesses. The performance of this approach is compared with conventional relevance feedback techniques in terms of computation efficiency and retrieval accuracy. The results indicate that the new technique substantially reduces response time for user feedback while maintaining the quality of the retrieval. In the previous studies, the QD technique relies on a pre-defined Relevance Support Support structure. As the result and user experience indicated that the structure might confine the search range and affect the result. In this dissertation, a novel Multiple Direction Search framework for semi-automatic annotation propagation is studied. In this system, the user interacts with the system to provide example images and the corresponding annotations during the annotation propagation process. In each iteration, the example images are dynamically clustered and the corresponding annotations are propagated separately to each cluster: images in the local neighborhood are annotated. Furthermore, some of those images are returned to the user for further annotation. As the user marks more images, iv the annotation process goes into multiple directions in the feature space. The query movements can be treated as multiple path navigation. Each path could be further split based on the user’s input. In this manner, the system provides accurate annotation assistance to the user - images with the same semantic meaning but different visual characteristics can be handled effectively. From comprehensive experiments on Corel and U. of Washington image databases, the proposed technique shows accuracy and efficiency on annotating image databases.
|
3 |
Content based image retrieval for bio-medical imagesNahar, Vikas, January 2010 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2010. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed Dec. 23, 2009). Includes bibliographical references (p. 82-83).
|
4 |
Three new methods for color and texture based image matching in Content-Based Image RetrievalHE, DAAN 22 April 2010 (has links)
Image matching is an important and necessary process in Content-Based Image Retrieval (CBIR). We propose three new methods for image matching: the first one is based on the Local Triplet Pattern (LTP) histograms; the second one is based on the Gaussian Mixture Models (GMMs) estimated by using the Extended Mass-constraint (EMass) algorithm; and the third one is called the DCT2KL algorithm.
First, the LTP histograms are proposed to capture spatial relationships between color levels of neighboring pixels. An LTP level is extracted from each 3x3 pixel block, which is a unique number describing the color level relationship between a pixel and its neighboring pixels. Second, we consider how to represent and compare multi-dimensional color features using GMMs. GMMs are alternative methods to histograms for representing data distributions. GMMs address the high-dimensional problems from which histograms usually suffer inefficiency. In order to avoid local maxima problems in most GMM estimation algorithms, we apply the deterministic annealing method to estimate GMMs. Third, motivated by image compression algorithms, the DCT2KL method addresses the high dimensional data by using the Discrete Cosine Transform (DCT) coefficients in the YCbCr color space. The DCT coefficients are restored by partially decoding JPEG images. Assume that each DCT coefficient sequence is emitted from a memoryless source, and all these sources are independent of each other. For each target image we form a hypothesis that its DCT coefficient sequences are emitted from the same sources as the corresponding sequences in the query image. Testing these hypotheses by measuring the log-likelihoods leads to a simple yet efficient scheme that ranks each target image according to the Kullback-Leibler (KL) divergence between the empirical distribution of the DCT coefficient sequences in the query image and that in the target image.
Finally we present a scheme to combine different features and methods to boost the performance of image retrieval. Experimental results on different image data sets show that these three methods proposed above outperform the related works in literature, and the combination scheme further improves the retrieval performance.
|
5 |
Intelligent content-based image retrieval framework based on semi-automated learning and historic profileschungkp@yahoo.com, Kien- Ping Chung January 2007 (has links)
Over the last decade, storage of non text-based data in databases has become an increasingly important trend in information management. Image in particular, has been gaining popularity as an alternative, and sometimes more viable, option for information storage. While this presents a wealth of information, it also creates a great problem in retrieving appropriate and relevant information during searching. This has resulted in an enormous growth of interest, and much active research, into the extraction of relevant information from non text-based databases. In particular,content-based image retrieval (CBIR) systems have been one of the most active areas of research.
The retrieval principle of CBIR systems is based on visual features such as colour, texture, and shape or the semantic meaning of the images. To enhance the retrieval speed, most CBIR systems pre-process the images stored in the database. This is because feature extraction algorithms are often computationally expensive. If images are to be retrieved from the World-Wide-Web (WWW), the raw images have to be downloaded and processed in real time. In this case, the feature extraction speed becomes crucial. Ideally, systems should only use those feature extraction algorithms that are most suited for analysing the visual features that capture the common relationship between the images in hand. In this thesis, a statistical discriminant analysis based feature selection framework is proposed. Such a framework is able to select the most appropriate visual feature extraction algorithms by using relevance feedback only on the user labelled samples. The idea is that a smaller image sample group is used to analyse the appropriateness of each visual feature, and only the selected features will be used for image comparison and ranking. As the number of features is less, an improvement in the speed of retrieval is achieved. From experimental results, it is found that the retrieval accuracy for small sample data has also improved. Intelligent E-Business has been used as a case study in this thesis to demonstrate the potential of the framework in the application of image retrieval system.
In addition, an inter-query framework has been proposed in this thesis. This framework is also based on the statistical discriminant analysis technique. A common approach in inter-query for a CBIR system is to apply the term-document approach. This is done by treating each images name or address as a term, and the query session as a document. However, scalability becomes an issue with this technique as the number of stored queries increases. Moreover, this approach is not appropriate for a dynamic image database environment. In this thesis, the proposed inter-query framework uses a cluster approach to capture the visual properties common to the previously stored queries. Thus, it is not necessary to memorise the name or address of the images. In order to manage the size of the users profile, the proposed framework also introduces a merging approach to combine clusters that are close-by and similar in their characteristics. Experiments have shown that the proposed framework has outperformed the short term learning approach. It also has the advantage that it eliminates the burden of the complex database maintenance strategies required in the term-document approach commonly needed by the interquery learning framework. Lastly, the proposed inter-query learning framework has been further extended by the incorporation of a new semantic structure. The semantic structure is used to connect the previous queries both visually and semantically. This structure provides the system with the ability to retrieve images that are semantically similar and yet visually different. To do this, an active learning strategy has been incorporated for exploring the structure. Experiments have again shown that the proposed new framework has outperformed the previous framework.
|
6 |
Efficient content-based retrieval of images using triangle-inequality-based algorithms /Berman, Andrew P. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. [95]-100).
|
7 |
Efficient Image Matching with Distributions of Local Invariant FeaturesGrauman, Kristen, Darrell, Trevor 22 November 2004 (has links)
Sets of local features that are invariant to common image transformations are an effective representation to use when comparing images; current methods typically judge feature sets' similarity via a voting scheme (which ignores co-occurrence statistics) or by comparing histograms over a set of prototypes (which must be found by clustering). We present a method for efficiently comparing images based on their discrete distributions (bags) of distinctive local invariant features, without clustering descriptors. Similarity between images is measured with an approximation of the Earth Mover's Distance (EMD), which quickly computes the minimal-cost correspondence between two bags of features. Each image's feature distribution is mapped into a normed space with a low-distortion embedding of EMD. Examples most similar to a novel query image are retrieved in time sublinear in the number of examples via approximate nearest neighbor search in the embedded space. We also show how the feature representation may be extended to encode the distribution of geometric constraints between the invariant features appearing in each image.We evaluate our technique with scene recognition and texture classification tasks.
|
8 |
Techniques for content-based image characterization in wavelets domainVoulgaris, Georgios January 2008 (has links)
This thesis documents the research which has led to the design of a number of techniques aiming to improve the performance of content-based image retrieval (CBIR) systems in wavelets domain using texture analysis. Attention was drawn on CBIR in transform domain and in particular wavelets because of the excellent characteristics for compression and texture extraction applications and the wide adoption in both the research community and the industry. The issue of performance is addressed in terms of accuracy and speed. The rationale for this research builds upon the conclusion that CBIR has not yet reached a good performance balance of accuracy, efficiency and speed for wide adoption in practical applications. The issue of bridging the sensory gap, which is defined as "[the difference] between the object in the real world and the information in a (computational) description derived from a recording of that scene." has yet to be resolved. Furthermore, speed improvement remains an uncharted territory as is feature extraction directly from the bitstream of compressed images. To address the above requirements the first part of this work introduces three techniques designed to jointly address the issue of accuracy and processing cost of texture characterization in wavelets domain. The second part introduces a new model for mapping the wavelet coefficients of an orthogonal wavelet transformation to a circular locus. The model is applied in order to design a novel rotation-invariant texture descriptor. All of the aforementioned techniques are also designed to bridge the gap between texture-based image retrieval and image compression by using appropriate compatible design parameters. The final part introduces three techniques for improving the speed of a CBIR query through more efficient calculation of the Li-distance, when it is used as an image similarity metric. The contributions conclude with a novel technique which, in conjunction with a widely adopted wavelet-based compression algorithm, extracts texture information directly from the compressed bit-stream for speed and storage requirements savings. The experimental findings indicate that the proposed techniques form a solid groundwork which can be extended to practical applications.
|
9 |
Image retrieval by spatial similarity a java - based prototypeHariharan, Sriram January 1998 (has links)
No description available.
|
10 |
A Content-Based Image Retrieval System for Fish TaxonomyTeng, Fei 22 May 2006 (has links)
It is estimated that less than ten percent of the world's species have been discovered and described. The main reason for the slow pace of new species description is that the science of taxonomy, as traditionally practiced, can be very laborious: taxonomists have to manually gather and analyze data from large numbers of specimens and identify the smallest subset of external body characters that uniquely diagnoses the new species as distinct from all its known relatives. The pace of data gathering and analysis can be greatly increased by the information technology. In this paper, we propose a content-based image retrieval system for taxonomic research. The system can identify representative body shape characters of known species based on digitized landmarks and provide statistical clues for assisting taxonomists to identify new species or subspecies. The experiments on a taxonomic problem involving species of suckers in the genera Carpiodes demonstrate promising results.
|
Page generated in 0.1028 seconds