1 |
Application of molecular techniques to assess changes in ruminal microbial populations and protozoal generation time in cows and continuous cultureKarnati, Sanjay Kumar Reddy, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 104-114).
|
2 |
Production of bacterial cells from methane in non-aseptic continuous cultureSheehan, Brian Talbot, January 1970 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
3 |
Investigating the effects of organic ligands on iron and copper availability to coastal and oceanic phytoplankton using continuous cultures /Pickell, Lisa D., January 2008 (has links)
Thesis (Ph.D.) in Oceanography--University of Maine, 2008. / Includes vita. Includes bibliographical references (leaves 156-166).
|
4 |
Investigating the Effects of Organic Ligands on Iron and Copper Availability to Coastal and Oceanic Phytoplankton Using Continuous CulturesPickell, Lisa D. January 2008 (has links) (PDF)
No description available.
|
5 |
ß-galactosidase production by Kluyveromyces lactis in batch and continuous cultureRam, Elaine C. January 2011 (has links)
Submitted in fulfilment of the requirements of the Degree of Master of Technology: Biotechnology, Durban University of Technology, 2001. / Kluyveromyces sp. have adapted to existence in milk due to the evolution of
permeabilisation and hydrolytic systems that allow the utilisation of lactose, the sugar
most abundant in milk. Lactose hydrolysis, to equimolar units of glucose and galactose,
is facilitated by a glycoside hydrolase, i.e., β-galactosidase (EC 3.2.1.23). The versatility
of this enzyme allows its application in numerous industrial processes, amongst the most
significant of which, is its role in the alleviation of lactose intolerance, one of the most
prevalent digestive ailments, globally. In this study, β-galactosidase production by
Kluyveromyces lactis UOFS y-0939 was initially optimised in shake flask culture with
lactose as the sole carbon source, and thereafter, production was scaled up to batch, fedbatch
and continuous culture. Shake flask studies revealed optimum conditions of 30°C,
pH 7 and a 10% inoculum ratio, to be most favourable for β-galactosidase synthesis,
producing a maximum of 0.35 ± 0.05 U.ml-1 when cell lysates were prepared by
ultrasonication with glass beads. Batch cultivation in 28.2 and 40 g.L-1 lactose revealed
that elevated levels of the carbon source was not inhibitory to β-galactosidase production,
as maximum enzyme activities of 1.58 and 4.08 U.ml-1, respectively, were achieved. Cell
lysates prepared by ultrasonication and homogenisation were compared and homogenised
cell lysates were more than 3.5 fold higher that those prepared by ultrasonication, proving
homogenisation to be the superior method for cell disruption. The lactose feed rate of
4 g.L-1.h-1 in fed-batch culture operated at ± 20.4% DO, appeared to be inhibitory to
biomass production, as indicated by the lower biomass productivity in fed-batch
(0.82 g.L-1.h-1) than batch culture (1.27 g.L-1.h-1). Enzyme titres, however, were favoured
by the low DO levels as a maximum of 8.7 U.ml-1, 5.5 fold more than that obtained in
batch culture, was achieved, and would be expected to increase proportionally with the
biomass. Continuous culture operated at a dilution rate of 0.2 h-1, under strictly aerobic
conditions, revealed these conditions to be inhibitory to the lactose consumption rate,
however, the non-limiting lactose and high DO environment was favourable for
β-galactosidase synthesis, achieving an average of 8 ± 0.9 U.ml-1 in steady state.
|
6 |
Théorie et applications des systèmes polyphasiques dispersés aux cultures cellulaires en chémostat / Theory and applications of polyphasic dispersed systems to chemostat cellular culturesThierie, Jacques 05 September 2005 (has links)
Les systèmes microbiologiques naturels (colonne d’eau), semi-naturels (station d’épuration), mais surtout industriels ou de laboratoire (bioréacteurs) sont communément représentés par des modèles mathématiques destinés à l’étude, à la compréhension des phénomènes ou au contrôle des processus (de production, par exemple).<p><p>Dans l’énorme majorité des cas, lorsque les cellules (procaryotes ou eucaryotes) mises en jeu dans ces systèmes sont en suspension, le formalisme de ces modèles non structurés traite le système comme s’il était homogène. Or, en toute rigueur, il est clair que cette approche n’est qu’une approximation et que nous avons à faire à des phénomènes hétérogènes, formés de plusieurs phases (solide, liquide, gazeuse) intimement mélangées. Nous désignons ces systèmes comme « polyphasiques dispersés » (SPD). Ce sont des systèmes thermodynami-quement instables, (presque) toujours ouverts.<p><p>La démarche que nous avons entreprise consiste à examiner si le fait de considérer des systèmes dits « homogènes » comme des systèmes hétérogènes (ce qu’ils sont en réalité) apporte, malgré une complication du traitement mathématique, un complément d’information significatif et pertinent. <p><p>La démarche s’est faite en deux temps :<p>·\ / Doctorat en sciences, Spécialisation biologie moléculaire / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0919 seconds