Spelling suggestions: "subject:"continuous time markov chain models"" "subject:"continuous time darkov chain models""
1 |
A Comparison of Computational Efficiencies of Stochastic Algorithms in Terms of Two Infection ModelsBanks, H. Thomas, Hu, Shuhua, Joyner, Michele, Broido, Anna, Canter, Brandi, Gayvert, Kaitlyn, Link, Kathryn 01 July 2012 (has links)
In this paper, we investigate three particular algorithms: A sto- chastic simulation algorithm (SSA), and explicit and implicit tau-leaping al- gorithms. To compare these methods, we used them to analyze two infection models: A Vancomycin-resistant enterococcus (VRE) infection model at the population level, and a Human Immunode ciency Virus (HIV) within host in- fection model. While the rst has a low species count and few transitions, the second is more complex with a comparable number of species involved. The relative effciency of each algorithm is determined based on computational time and degree of precision required. The numerical results suggest that all three algorithms have the similar computational effciency for the simpler VRE model, and the SSA is the best choice due to its simplicity and accuracy. In addition, we have found that with the larger and more complex HIV model, implementation and modication of tau-Leaping methods are preferred.
|
2 |
Adaption of Akaike Information Criterion Under Least Squares Frameworks for Comparison of Stochastic ModelsBanks, H. T., Joyner, Michele L. 01 January 2019 (has links)
In this paper, we examine the feasibility of extending the Akaike information criterion (AIC) for deterministic systems as a potential model selection criteria for stochastic models. We discuss the implementation method for three different classes of stochastic models: continuous time Markov chains (CTMC), stochastic differential equations (SDE), and random differential equations (RDE). The effectiveness and limitations of implementing the AIC for comparison of stochastic models is demonstrated using simulated data from the three types of models and then applied to experimental longitudinal growth data for algae.
|
Page generated in 0.0886 seconds