Spelling suggestions: "subject:"continuum thermodynamic""
1 |
[en] THE MANY FACES OF THERMODYNAMICS OF CONTINUOUS MEDIA AND APPLICATIONS / [pt] AS VÁRIAS FACES DA TERMODINÂMICA DOS MEIOS CONTÍNUOS E APLICAÇÕESMARCIO ARAB MURAD 16 March 2018 (has links)
[pt] O presente trabalho visa dois objetivos. 0 primeiro, didático, é de apresentar algumas versões da Termodinâmica dos Meios Contínuos, elucidando suas semelhanças e diferenças várias formas da segunda lei são apresentadas, questionando-se em alguns casos as suas supostas generalidades. O segundo objetivo, de pesquisa, desenvolve na versão de Serrin os conceitos de Estabilidade Termodinâmica e Exergia, aplicando-os no estudo dos ciclos de Carnot e de Rankine. Através do conceito de função de acumulação introduz-se uma nova maneira de se determinar a eficiência dos referidos ciclos. Ainda na versão de Serrin, aplica-se a teoria de processos de transição no estudo do efeito Joule-Thomson. Os fluidos de trabalho são um gás ideal, caracterizado pela convexidade do seu espaço de estados, e um fluido de Van der Halls, que não possui a mesma característica. Finalmente, no contexto da Termodinâmica de Processos Irreversíveis é feita uma comparação entre as soluções de problemas de condução de calor em meios rígidos e elásticos lineares isotrópicos. / [en] The present work has two purposes. The first one is didactic. It intend to present many versions of the Continuun Thermodynamics discussing their resemblances and diferences. Many forms of the second law are presented and in some cases their supposed generalities are questioned. The second purpose lies on the basic research. It is carried out applying the Serrin s version the concepts of Thermodynamic Stability and Availability in the studied of the Carnot s and Rankine s cycles. By meaning of the accumulation
function concept a newform to determine the efficience of the above cycles is introduced. On the other hand in the Serrin s version the theory of transition processes can be applied in the study of the Joule-Thomson effect. The working fluids are an ideal gas which is characterized by the convexity of it s state space and the Van der Waals fluid which is not provided of such characteristic. Finally in the context of the Irreversible Thermodynamics is made a comparison between the solutions of heat conduction problems in rigid and linear isotropic elastic continuum.
|
2 |
Modeling of Shape Memory Alloys Considering Rate-independent and Rate-dependent Irrecoverable StrainsHartl, Darren J. 2009 December 1900 (has links)
This dissertation addresses new developments in the constitutive modeling and
structural analysis pertaining to rate-independent and rate-dependent irrecoverable
inelasticity in Shape Memory Alloys (SMAs). A new model for fully recoverable SMA
response is derived that accounts for material behaviors not previously addressed.
Rate-independent and rate-dependent irrecoverable deformations (plasticity and viscoplasticity)
are then considered. The three phenomenological models are based on
continuum thermodynamics where the free energy potentials, evolution equations, and
hardening functions are properly chosen. The simultaneous transformation-plastic
model considers rate-independent irrecoverable strain generation and uses isotropic
and kinematic plastic hardening to capture the interactions between irrecoverable
plastic strain and recoverable transformation strain. The combination of theory and
implementation is unique in its ability to capture the simultaneous evolution of recoverable
transformation strains and irrecoverable plastic strains. The simultaneous
transformation-viscoplastic model considers rate-dependent irrecoverable strain generation
where the theoretical framework is modfii ed such that the evolution of the
viscoplastic strain components are given explicitly. The numerical integration of the
constitutive equations is formulated such that objectivity is maintained for SMA
structures undergoing moderate strains and large displacements. Experimentally validated
analysis results are provided for the fully recoverable model, the simultaneous
transformation-plastic yield model, and the transformation-viscoplastic creep model.
|
3 |
Nelineární stabilita stacionárních stavů v termomechanice viskoelastických tekutin / Nonlinear stability of steady states in thermomechanics of viscoelastic fluidsDostalík, Mark January 2021 (has links)
We study nonlinear stability of steady state solutions of partial differential equations governing the thermomechanical evolution of viscoelastic fluids; materials that exhibit both viscous as well as elastic response when undergoing deformation. It is well-known that thermodynamical concepts can be gainfully exploited in the construction of Lya- punov functionals for nonlinear stability analysis of spatially homogeneous equilibrium rest states in thermodynamically closed systems. We show that the thermodynamically oriented approach can be utilized in the nonlinear stability analysis of spatially inhomo- geneous non-equilibrium steady states in thermodynamically open systems as well. The thesis consists of two parts. In the first part, we revisit the classical construction of Lyapunov functionals in thermodynamically closed systems and we apply the nonlinear stability theory to compressible heat-conducting viscoelastic fluids modeled by a multi- scale, as well as a purely macroscopic approach. In the second part, we focus on two special instances of thermodynamically open systems. First, we show that the spatially inhomogeneous non-equilibrium steady state of an incompressible heat-conducting vis- coelastic fluid, which occupies a mechanically isolated vessel with walls kept at spatially non-uniform...
|
Page generated in 0.0745 seconds