• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 21
  • 17
  • 8
  • 6
  • 3
  • 1
  • Tagged with
  • 104
  • 29
  • 25
  • 23
  • 21
  • 21
  • 18
  • 16
  • 14
  • 14
  • 14
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A critical study of finite strain porous inelasticity

Marin, Esteban Belisario 12 1900 (has links)
No description available.
2

A rate-dependent bounding surface model for nonproportional cyclic viscoplasticity

Moosbrugger, John C. 12 1900 (has links)
No description available.
3

Constitutive models of a time dependent material at finite strain levels /

Miyazono, Toshiya. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 72-76).
4

Modeling of elastic-viscoplastic behavior and its finite element implementation /

Diehl, Ted. January 1988 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1988. / Includes bibliographical references (leaves 67-69).
5

Aspects of a finite strain constitutive model for semicrystalline polymers /

Holmes, David William. January 2007 (has links)
Thesis (Ph.D.) - James Cook University, 2007. / Typescript (photocopy) Bibliography: leaves 125-131.
6

Viscoelastic/plastic characterization, rutting and fatigue of flexible pavements /

Abdulshafi, Abdulshafi A. January 1983 (has links)
No description available.
7

A theory of amorphous polymeric solids undergoing large deformations: application to micro-indentation of poly(methyl methacrylate)

Ames, N.M., Anand, Lallit 01 1900 (has links)
Although existing continuum models for the elasto-viscoplastic response of amorphous polymeric materials phenomenologically capture the large deformation response of these materials in a reasonably acceptable manner, they do not adequately account for the creep response of these materials at stress levels below those causing “macro-yield”, as well as the Bauschinger-type reverse yielding phenomena at strain levels less than ≈ 30% associated with the macro-yield transient. Anand [1] has recently generalized the model of Anand and Gurtin [2] to begin to capture these important aspects of the mechanical response of such materials. In this work, we summarize Anand’s constitutive model and apply it to the amorphous polymeric solid poly(methyl methacrylate) (PMMA), at ambient temperature and compressive stress states under which this material does not exhibit crazing. We describe our compression-tension and creep experiments on this material from which the material parameters in the model were determined. We have implemented the constitutive model in the finite-element computer program ABAQUS/Explicit [3], and using this finite-element program, we show numerical results for some representative problems in micro-indentation of PMMA, and compare them against corresponding results from physical experiments. The overall predictions of the details of the load, P, versus depth of indentaion, h, curves are very encouraging. / Singapore-MIT Alliance (SMA)
8

Elastohydrodynamic inlet zone analysis for viscoplastic lubricants

Gecim, Burak 05 1900 (has links)
No description available.
9

Influence of Inelastic Phenomena on the Actuation Characteristics of High Temperature Shape Memory Alloys

Kumar, Parikshith K. 2009 December 1900 (has links)
Most e orts on High Temperature Shape Memory Alloys (HTSMAs), have focused on improving their work characteristics by thermomechanical treatment methods. However, the in uence of transformation induced plasticity (TRIP) and viscoplasticity during actuation has not been studied. The objective of this dissertation work was to study the in uence of plasticity and viscoplasticity on the transformation characteristics that occur during two common actuation-loading paths in TiPdNi HTSMAs. Thermomechanical tests were conducted along di erent loading paths. The changes in the transformation temperature, actuation strain and irrecoverable strain during the tests were monitored. Transmission Electron Microscopy (TEM) studies were also conducted on select test specimens to understand the underlying microstructural changes. The study revealed that plasticity, which occurs during certain actuation load paths, alters the transformation temperatures and/or the actuation strain depending on the loading path chosen. The increase in the transformation temperature and the irrecoverable strain at the end of the loading path indicated that the rate independent irrecoverable strain results in the generation of localized internal stresses. The increased transformation temperatures were mapped with an equivalent stress (which corresponds to an internal stress) using the as-received material's transformation phase diagram. A trend for the equivalent internal stress as a function of the applied stress and accumulated plastic strain was established. Such a function can be implemented into thermomechanical models to more accurately capture the behavior of HTSMAs during cyclic actuation. On the contrary, although the viscoplastic strain generated during the course of constant stress thermal actuation could signi cantly reduce actuation strain depending on the heating/cooling rate. Additional thermomechanical and microstructural tests revealed no signi cant change in the transformation behavior after creep tests on HTSMAs. Comparing the thermomechanical test results and TEM micrographs from di erent cases, it was concluded that creep does not alter the transformation behavior in the HTSMAs, and any change in the transformation behavior can be attributed to the retained martensite which together with TRIP contributes to the rate independent irrecoverable strain. As a consequence, a decrease in the volume fraction of the martensite contributing towards the transformation must be considered in the modeling.
10

A Micromechanical Model for Viscoelastic-Viscoplastic Analysis of Particle Reinforced Composite

Kim, Jeong Sik 2009 December 1900 (has links)
This study introduces a time-dependent micromechanical model for a viscoelastic-viscoplastic analysis of particle-reinforced composite and hybrid composite. The studied particle-reinforced composite consists of solid spherical particle and polymer matrix as constituents. Polymer constituent exhibits time-dependent or inelastic responses, while particle constituent is linear elastic. Schapery's viscoelastic integral model is additively combined with a viscoplastic constitutive model. Two viscoplastic models are considered: Perzyna's model and Valanis's endochronic model. A unit-cell model with four particle and polymer sub-cells is generated to obtain homogenized responses of the particle-reinforced composites. A time-integration algorithm is formulated for solving the time-dependent and inelastic constitutive model for the isotropic polymers and nested to the unit-cell model of the particle composites. Available micromechanical models and experimental data in the literature are used to verify the proposed micromechanical model in predicting effective viscoelasticviscoplastic responses of particle-reinforced composites. Filler particles are added to enhance properties of the matrix in the fiber reinforced polymer (FRP) composites. The combined fiber and particle reinforced matrix forms a hybrid composite. The proposed micromechanical model of particle-reinforced composites is used to provide homogenized properties of the matrix systems, having filler particles, in the hybrid composites. Three-dimensional (3D) finite element (FE) models of composite's microstructures are generated for two hybrid systems having unidirectional long fiber and short fiber embedded in cubic matrix. The micromechanical model is implemented at the material (Gaussian) points of the matrix elements in the 3D FE models. The integrated micromechanical-FE framework is used to examine time-dependent and inelastic behaviors of the hybrid composites.

Page generated in 0.0566 seconds