• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 21
  • 17
  • 8
  • 6
  • 3
  • 1
  • Tagged with
  • 104
  • 29
  • 25
  • 23
  • 21
  • 21
  • 18
  • 16
  • 14
  • 14
  • 14
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multiphase Deformation Analysis of Elasto-viscoplastic Unsaturated Soil and Modeling of Bentonite / 弾-粘塑性不飽和土の多相変形解析とベントナイトのモデル化 / ダン - ネンソセイ フホウワド ノ タソウ ヘンケイ カイセキ ト ベントナイト ノ モデルカ

Feng, Huaiping 24 March 2008 (has links)
The deformation behavior of unsaturated soil has been the subject of numerous experimental and theoretical investigations. However, this phenomenon is not fully understood. Problems, such as the adoption of the proper stress variables, reduction of suction inducing collapse, suction effect on soil stiffness, rate dependency and air trapped within the soil under rainfall infiltration still need additional studies. In the present studies, an elasto-viscoplastic model for unsaturated soil is used based on two stress variables: 1) the skeleton stress is adopted as the stress variable; 2) suction is incorporated into the constitutive model to describe the collapse behavior. In addition, to investigate the multiphase behavior of unsaturated soil, a three-phase coupled model has been proposed based on the Theory of Porous Media (TPM) and finite deformation theory. Van Genuchten type of equation is employed as a constitutive equation between the saturation and the suction. Three-dimensional multiphase simulations are carried out to reproduce the behavior of unsaturated soil during monotonic loading triaxial tests under drained and undrained conditions for water and air. Compared with experimental results and the simulated results, it is seen that the proposed formulation is very suitable to describe the mechanical behaviors of unsaturated soil. Cyclic behavior of unsaturated soil has attracted much attention during the past few years. An elasto-viscoplastic cyclic model for saturated soil is extended for modeling of unsaturated soil. Based on finite deformation theory, three-dimensional multiphase analyses for unsaturated soil under cyclic loading are presented. The simulations are verified with cyclic triaxial tests on unsaturated silty clay under undrained for water and air conditions. It shows that the proposed multiphase formulation can be used to simulate the behaviors of unsaturated soil under cyclic loading. The high expansiveness of bentonite is another significant problem in unsaturated soil mechanics. In this research, an elasto-viscoplastic model for unsaturated expansive soil has been developed. An evolutional equation is adopted for describing the absorption of water into interlayer of clay platelets. In addition, the internal compaction effect caused by swelling of clay unit is expressed with the expansion of overconsolidation boundary surface and static yield surface. Based on the model, one-dimensional finite element analysis is conducted to study the development of swelling pressure. Compared with experimental results and simulated results, it is found that the proposed model can reproduce the effects of dry density and initial water content on swelling behavior. Using the proposed swelling model, two-dimensional swelling behaviors of the waste barrier are simulated. / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第13775号 / 工博第2879号 / 新制||工||1425(附属図書館) / 25991 / UT51-2008-C691 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 岡 二三生, 教授 松岡 俊文, 准教授 木元 小百合 / 学位規則第4条第1項該当
12

Criteria for Numerical Stability of Explicit Time-Stepping Elastic-Viscoplasticity

Higgins, Jerry 06 1900 (has links)
A simple yet effective technique is used to obtain a numerical stability criteria for explicit time-marching algorithms in elastic-viscoplasticity. The resulting stability criteria are capable of accounting for non-associative and work hardening viscoplasticity for a wide variety of constitutive laws of the Perzyna-type. Conservative estimates for maximum permissible time step are obtained. This thesis investigates the level of conservativeness by considering different problems exhibiting various levels of constraint. Using the proposed stability criterion, assuming a linear flow function, non-hardening and uniform material properties, it is shown that the initial strain algorithm for plasticity and the initial strain viscoplastic algorithms are numerically the same. The intuitive approach used to obtain an estimate of maximum permissible time step was also used to develop an unconditionally stable implicit time marching scheme which avoids expensive matrix inversions. / Thesis / Master of Engineering (ME)
13

Fracture of welded joints under impulsive loads by a local damage criterion

Moraes, Ricardo 01 April 2001 (has links)
No description available.
14

Anisotropic Characterization of Asphalt Mixtures in Compression

Zhang, Yuqing 1983- 14 March 2013 (has links)
Rutting is one of the major distresses in asphalt pavements and it increases road roughness and traps water, which leads to wet-weather accidents due to the loss of tire-pavement friction and hydroplaning. The fundamental mechanisms of rutting have not been well addressed because of the complexity of asphalt mixtures. A comprehensive characterization of the asphalt mixtures in compression was accomplished by mechanistically modeling the inherent anisotropy, viscoelasticity, viscoplasticity and viscofracture of the material. The inherent anisotropy due to preferentially oriented aggregates was characterized by a microstructural parameter (i.e., modified vector magnitudes) which could be rapidly and accurately measured by lateral surface scanning tests and physically related to anisotropic modulus ratio. The anisotropic viscoelasticity was represented by complex moduli and Poisson's ratios in separate orthogonal directions that were determined by an efficient testing protocol. Master curve models were proposed for the magnitude and phase angle of these complex variables. The viscoplasticity were intensively modeled by an anisotropic viscoplastic model which incorporated 1) modified effective stresses to account for the inherent and stress-induced anisotropy; 2) a new model to provide a smooth and convex yield surface and address the material cohesion and internal friction; 3) a non-associated flow rule to consider the volumetric dilation; and 4) a temperature and strain rate dependent strain hardening function. The viscofracture resulting from the crack growth in compression led to the stress-induced anisotropy and was characterized by anisotropic damage densities, the evolution of which was modeled by the anisotropic pseudo J-integral Paris' laws. Results indicated that the undamaged asphalt mixtures were inherently anisotropic and had vertical to horizontal modulus ratios from 1.2 to 2.0 corresponding to the modified vector magnitudes from 0.2 and 0.5. The rutting would be underestimated without including the inherent anisotropy in the constitutive modeling. Viscoelastic and viscoplastic deformation developed simultaneously while the viscofracture deformation occurred only during the tertiary flow, which was signaled by the increase of phase angle. Axial and radial strain decomposition methods were proposed to efficiently separate the viscoplasticity and viscofracture from the viscoelasticity. Rutting was accelerated by the occurrence of cracks in tertiary flow. The asphalt mixture had a brittle (splitting cracks) or ductile (diagonal cracks) fracture when the air void content was 4% and 7%, respecitvely. The testing protocol that produced the material properties is efficient and can be completed in one day with simple and affordable testing equipment. The developed constitutive models can be effectively implemented for the prediction of the rutting in asphalt pavements under varieties of traffic, structural, and environmental conditions.
15

Thermal Fatigue Life Study for Film-BGA

Chen, Wang-Lung 20 June 2002 (has links)
This study aims to investigate the effect of a 96 I/O Film-BGA package of surface mounted components on the thermal induced nonlinear viscoplastic deformation of solder balls during temperature cyclic loading between -40¢J to 125¢J. Specifically, it aims to study the trend effect of the joint fatigue life with respect to four control factors of the PI (Polyimide) thickness, die size, die thickness, and the upper copper trace thickness. Then, two different package types of Fan-in and Fan-out design in terms of the joint fatigue life are discussed. Due to the structure/loading symmetry, a three-dimension octant finite element structure was modeled to capture the entire package structural behaviors and a formulation of Modified Coffin-Manson was used to predict the joint fatigue life. Under temperature cyclic loading, the study results show that the die size, die thickness, and PI thickness had significant impact on the solder joint fatigue life, especially the effect of applying die size to the joint, but the upper copper trace thickness had little effect on the joint fatigue life. The study results also show that the package type of Fan-out design had higher joint fatigue life than that the package type of Fan-in design did for this Film-BGA package. In addition, by using the Taguchi method, the research could find the intensity of affected fatigue life due to the selected four control factors, and determine the optimized design by means of the optimized dimensions of the control factors. Then, the use of the ANOVA (analysis of variance) method helped the researcher predict the optimized joint fatigue life in comparison with the study results by using ANSYS finite element software analysis.
16

Damage initiation, progression and failure of polymer matrix composites due to manufacturing induced defects

Chowdhury, Khairul Alam 17 September 2007 (has links)
In polymer matrix composites (PMCs) manufacturing processes can induce de- fects, e.g., voids, fiber misalignment, irregular fiber distribution in the cross-section and broken fibers. The effects of such defects can be beneficial or deleterious de- pending on whether they cause failure suppression or enhancement by localized de- formation processes e.g., crazing, shear yielding and fiber-matrix debonding. In this study, a computational approach is formulated and implemented to develop solu- tions for general boundary-value problems for PMC microstructures that accounts for micromechanics-based constitutive relations including fine scale mechanisms of material failure. The defects considered are voids, and the microstructure is explic- itly represented by a distribution of fibers and voids embedded in a polymer matrix. Fiber is modeled as a linearly elastic material while the polymer matrix is mod- eled as an elastic-viscoplastic material. Two distinct models for the matrix behavior are implemented: (i) Drucker–Prager type Bodner model that accounts for rate and pressure-sensitivity, and (ii) improved macromolecular constitutive model that also accounts for temperature dependence, small-strain softening and large-strain harden- ing. Damage is simulated by the Gearing-Anand craze model as a reference model and by a new micromechanical craze model, developed to account for craze initiation, growth and breakdown. Critical dilatational energy density criterion is utilized to predict fiber-matrix debonding through cavitation induced matrix cracking. An extensive parametric study is conducted in which the roles of void shape, size and distribution relative to fiber in determining damage initiation and evolution are investigated under imposed temperature and strain rate conditions. Results show there are significant effects of voids on microstructural damage as well as on the overall deformational and failure response of composites.
17

Characterization of material behavior during the manufacturing process of a co-extruded solid oxide fuel cell

Eisele, Prescott L. January 2004 (has links) (PDF)
Thesis (M.S.)--Engineering, Georgia Institute of Technology, 2004. / McDowell, David, Committee Chair; Neu, Richard, Committee Member; Lee, Jim, Committee Member; Cochran, Joe, Committee Member. Includes bibliographical references (leaves 159-162).
18

Three-dimensional finite-deformation multiscale modeling of elasto-viscoplastic open-cell foams in the dynamic regime

Romero, Pedro A. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Mechanical and Aerospace Engineering." Includes bibliographical references (p. 121-129).
19

Consolidation Analysis of Sri Lankan Peaty Clay using Elasto-viscoplastic Theory / 弾粘塑性理論を用いたスリランカピート質粘土の圧密解析 / ダンネンソセイ リロン オ モチイタ スリランカ ピートシツ ネンド ノ アツミツ カイセキ

Karunawardena, Wanigavitharana Asiri 25 September 2007 (has links)
学位授与大学:京都大学 ; 取得学位: 博士(工学) ; 学位授与年月日: 2007-09-25 ; 学位の種類: 新制・課程博士 ; 学位記番号: 工博第2841号 ; 請求記号: 新制/工/1418 ; 整理番号: 25526 / The consolidation of peat is complex due to the resultant large strain associated with the highly compressible nature of natural peat deposits and to the rapid changes in soil properties during the consolidation process. In addition, the consolidation process is further complicated by the occurrence of secondary compression which significantly contributes to the overall settlement of peaty soil. Therefore, it is necessary to take these properties into account in order to obtain better predictions from peat consolidation analyses. In the present study, the consolidation behavior of peaty clay found in Sri Lanka is extensively studied using a model based on the elasto-viscoplastic theory. The model can describe the prominent creep behavior of peaty soil as a continuous process. In addition, the model can accommodate the effect of structural degradation on the consolidation process. The analysis takes into account all the main features involved in the peat consolidation process, namely, finite strain, variable permeability, and the effect of secondary compression. Also, it considers the variable compressibility for stage-constructed embankments which exert high levels of pressure on the peaty subsoil. The constitutive equations used in the model and the procedure adapted to account for the above-mentioned features of the analysis are described. The constitutive model is based on Perzyna’s type viscoplastic theory and the Cambridge elasto-plastic theory combined with empirical evidence. In the finite element formulations, which are based on the finite deformation theory, an updated Lagrangian method is adopted. A description of the material parameters used in the model and the procedures applied to evaluate them, with standard laboratory and field tests, are explained. In addition, a performance of the model incorporating the original and the modified Cam-clay theory is evaluated by simulating triaxial test results. A comparison shows that with the present definition of the parameters, the original model yields more representative results than the model based on the modified Cam-clay theory. Initially, the capability of the constitutive model to capture the consolidation behavior is verified using the consolidation model test data on peaty clay found in Sri Lanka. It is confirmed that the constitutive model is able to predict the observed creep characteristics and the effect of sample thickness on settlement predictions for the material under consideration. The performance of the model in predicting the consolidation behavior under field conditions is studied using field data on instrumented earth fill constructed on peaty clay. One-dimensional compression is assumed for the peaty clay due to the large plane area of the fill. Separate analyses are carried out by the model considering the infinitesimal strain theory, the finite strain theory, and the finite strain theory together with the effect of structural degradation in order to explore how these features describe the observed field behavior. Analyses reveal that it is necessary to consider finite deformation together with the effect of structural degradation in order to successfully simulate the resultant large strain and the stagnated pore water pressure observed in the field. The construction of road embankments over peat deposits is quite problematic, and thus, it is often done after first improving the properties of the peaty soil through the utilization of appropriate ground-improvement techniques. Understanding the field response of peaty clay during this improvement process is naturally of great importance. A constitutive model is applied to predict the field performance of embankments constructed on peaty clay using different ground-improvement techniques. The back analysis of embankments constructed with the preloading method indicates that the model can be successfully applied to predict both the deformation and the stability of structures constructed on peaty clays. The stability of the embankment during and after construction is verified by investigating the stress-strain characteristics of the subsoil. The model applications used to predict the consolidation behavior of embankments constructed by the preloading method, combined with other ground-improvement techniques, are then discussed. Embankments constructed with prefabricated vertical drains (PVDs) and sand compaction piles (SCPs) are considered, and finite element analyses are carried out in all cases by converting the actual three-dimensional conditions that exist around the drains into simplified two-dimensional plane strain conditions. The field behavior when PVDs are installed in the peaty clay is simulated using the equivalent vertical permeability for the PVD-improved subsoil. In the case of SCPs, a conversion scheme is used to transform the axisymmetric nature of sand columns into equivalent plane strain conditions. A comparison of the predicted results with the field observations shows a reasonable agreement. An analysis of the PVD-improved foundation indicates that the installation of PVDs not only accelerates the rate of consolidation, but influences the deformation pattern of the subsoil due to embankment loading. The analysis also shows that the use of PVDs can significantly increase embankment stability. The model prediction for the SCP-improved foundation reveals that the stiffness and the area replacement ratio used in the conversion scheme play vital roles in predicting the behavior of SCP-improved soft grounds. The observed improvements in the bearing capacity of the subsoil and in the stability of the embankment, brought about by the installation of SCPs, can be simulated by the model. / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第13370号 / 工博第2841号 / 新制||工||1418(附属図書館) / 25526 / UT51-2007-Q771 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 岡 二三生, 教授 田村 武, 准教授 木元 小百合 / 学位規則第4条第1項該当
20

Predictive Micro- and Meso-Mechanics Damage Models for Continuous Fiber-Reinforced Thermoplastic Composites

Pulungan, Ditho Ardiansyah 11 1900 (has links)
Environmental issues enforce transportation sectors to limit their carbon dioxide emissions in various ways. Automotive manufacturers attempt to reduce carbon dioxide emission by seeking various strategies, e.g., increasing aerodynamic efficiency, using more fuel-efficient engines, reducing friction and wear of transmission systems, and, most importantly, by using lightweight materials and structures. This dissertation is a contribution toward a lightweight design of structures by proposing numerical models suitable for damage prediction of thermoplastic composite materials. In this dissertation, predictive damage models for two different length scales, namely micromechanics, and mesomechanics, were proposed. Micromechanics is used to predict the nonlinear damage behavior of elementary thermoplastic composite ply, while the mesomechanics is used to predict the failure behavior of thermoplastic composite laminates (test coupon or plate scale). For the micromechanics, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. We proposed a viscoelastic viscoplastic model for the polypropylene matrix to extend the capability of the micromechanics model in predicting the damage behavior of the composite ply at higher rates. At the mesoscale, we improved the classical mesomechanics damage modeling in the off-axis direction by introducing the confinement effect. The pragmatic approach consists of separating the progressive damage into two parts, namely “diffuse damage regime” and “transverse-cracking regime”, were described by two distinct damage parameters. We also enriched the mesomechanics model by proposing a viscoelastic and viscoplastic model to account for the rate-dependent behavior of the thermoplastic composites. We showed that the predictions given by the proposed micromechanics and mesomechanics models were in excellent agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it useful virtual testing tools for the design of thermoplastic composites.

Page generated in 0.0562 seconds