• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • Tagged with
  • 54
  • 54
  • 20
  • 20
  • 13
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Espécies reativas de oxigênio como sinalizadores das respostas metabólicas mediadas por contração no músculo esquelético. / Reactive oxygen species as signaling molecules of contraction-mediated metabolic responses in skeletal muscle.

Carlos Hermano da Justa Pinheiro 16 September 2008 (has links)
A atividade contrátil no músculo esquelético é um estímulo potente na indução de alterações no metabolismo de glicose e ácidos graxos. Por sua vez, a contração muscular também aumenta a produção de espécies reativas de oxigênio (EROs). O objetivo do presente trabalho foi avaliar o efeito da remoção de EROs, induzida pelo tratamento com o antioxidante N-Acetilcisteína, na captação de glicose, atividades de enzimas glicolíticas e do ciclo de Krebs, produção de lactato, oxidação mitocondrial de ácidos graxos, expressão dos genes do transportador de glicose 4 (GLUT-4), hexoquinase II (HKII), fosfofrutoquinase 1 (PFK-1), carnitina palmitoil transferase 1 (CPT-1) e citrato sintase (CS) em células musculares esqueléticas durante contrações induzidas por eletroestimulação in vitro. Com esse estudo, demonstrou-se que as EROs atuam como sinalizadores das respostas metabólicas mediadas pela atividade contrátil e que a sinalização redox regula o metabolismo de glicose e ácidos graxos em células musculares esqueléticas. / Contractile activity is a potent stimulus for induce changes in glucose and fatty acid metabolism in skeletal muscle. During muscle contraction, the production of reactive oxygen species (ROS) is increased. The purpose of this study was evaluate the effect of removal of ROS, induced by treatment with the antioxidant N-Acetylcysteine, on glucose uptake, activities of glycolytic and TCA cycle enzymes, lactate production, mitochondrial fatty acid oxidation, gene expression of glucose transporter 4 (GLUT-4), hexokinase II (HKII), phosphofructokinase 1 (PFK-1), carnitine palmitoyl transferase 1 (CPT-1) and citrate synthase (CS) mediated by moderate contractions induced by electrical stimulation in vitro. In this study we demonstrated that ROS act as signaling molecules on contraction-mediated metabolic responses and that redox signaling regulates glucose and fatty acid metabolism in skeletal muscle cells.
52

Análise eletromiográfica dos músculos bíceps braquial e reto femoral de portadoras de diabetes do tipo 2 durante contração estática voluntária máxima

Castro, Antônio Paulo André de 29 March 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-05-30T12:20:50Z No. of bitstreams: 1 antoniopauloandredecastro.pdf: 1766727 bytes, checksum: 9e0fb7d47b81afb5f261067426a45e6c (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-02T11:57:53Z (GMT) No. of bitstreams: 1 antoniopauloandredecastro.pdf: 1766727 bytes, checksum: 9e0fb7d47b81afb5f261067426a45e6c (MD5) / Made available in DSpace on 2016-07-02T11:57:53Z (GMT). No. of bitstreams: 1 antoniopauloandredecastro.pdf: 1766727 bytes, checksum: 9e0fb7d47b81afb5f261067426a45e6c (MD5) Previous issue date: 2012-03-29 / A investigação das propriedades eletrofisiológicas do sistema neuromuscular (SN) durante o processo de modulação da força muscular tem sido objeto de estudos em diversas áreas. Entre as técnicas empregadas com esta finalidade encontra-se a eletromiografia de superfície (sEMG). Em meio às condições patológicas potencialmente capazes de provocar alterações nas propriedades teciduais e fisiológicas do SN, e, consequentemente, nas propriedades eletrofisiológicas durante o processo de modulação da força, destaca-se o diabetes mellitus do tipo 2 (DM2). O objetivo do presente estudo foi investigar, através dos valores de frequência mediana (FMed) e de distribuição de potência por faixas (DPF) da densidade espectral de potência, as propriedades eletromiográficas dos músculos bíceps braquial (BB) e reto femoral (RF) de portadoras de DM2 com tempo de diagnóstico <5 anos, durante contração estática voluntária máxima (CEVM). Participaram do presente estudo seis pacientes DM2 (GDM2) e seis não diabéticas (GC), sedentárias, com idade e IMC semelhantes. Não foram observadas diferenças significativas para os valores de força durante a flexão do antebraço (21,3 ± 5,0 vs 22,9 ± 3,6 kgf) e a extensão da joelho (45,9 ± 14,5 vs 57,6 ± 15,3 kgf) entre o GDM2 e GC. No entanto, observou-se diferenças significativas para os valores de FMed (125,73 ± 14,9 Hz vs 158,17 ± 24,7 Hz para o sinal eletromiográfico do BB e 126,02 ± 8,1 Hz vs 148,18 ± 13,0 Hz para o sinal do RF, GDM2 e GC, respectivamente). Na investigação da DPF, diferenças significativas para a faixa de frequência entre 101 e 110 Hz do sinal eletromiográfico do BB e nas faixas entre 81 e 90 Hz e entre 91 e 100 Hz do sinal eletromiográfico do RF foram encontradas. Apesar de ainda não terem sido evidenciado comprometimentos estatisticamente significativos para os valores de força, diferenças significativas foram encontradas para os valores de FMed e DPF entre os grupo avaliados. Tais diferenças podem estar associadas, em parte, ao aumento da duração dos potenciais de ação das unidades motoras e o comprometimento na ativação de unidades motoras ativadas em faixas de frequência superiores. / The investigation of the electrophysiological properties of the neuromuscular system (NS) during the modulation of muscle strength has been studied in several areas. Among the techniques employed for this purpose is surface electromyography (sEMG). In the midst of pathological conditions that can potentially cause changes in the tissue and physiological properties of the SN, and hence the electrophysiological properties during the modulation of force, there is type 2 diabetes mellitus (T2DM). The aim of this study was to investigate, through the values of median frequency (MdF) and power distribution frequency (PDF) of the power spectral density, the electrophysiological properties of sEMG of the biceps brachii muscle (BB) and rectus femoris muscle (RF) of women with T2DM with time since diagnosis <5 years, during static maximum voluntary contraction (SMVC). The study included six patients DM2 (GDM2) and six nondiabetic (GC), sedentary, with similar age and body mass index (BMI). There were no significant differences in the values of SMVC during elbow flexion (21.3 ± 5.0 vs 22.9 ± 3.6 kgf) and knee extension (45.9 ± 14.5 vs 57.6 ± 15.3 kgf) between the GC and GDM2. However, we found significant differences in the values of MdF (125.73 ± 158.17 ± 14.9 Hz vs 24.7 Hz for the EMG signal of BB and 126.02 vs. 148.18 ± 8.1 Hz ± 13.0 Hz for the RF signal, and GDM2 GC, respectively). In investigating the DPF, significant differences in the frequency range between 101 and 110 Hz for sEMG of BB and the bands between 81 and 90 and between 91 Hz and 100 Hz of the sEMG of the RF were found. Although still not have been shown statistically significant for values of strength, significant differences were found for the values of MdF and DPF between the groups evaluated. Such differences may be related in part to the increased duration of action potentials of motor units and involvement in the activation of motor units activated at higher frequency bands.
53

Detecção de fadiga neuromuscular em pessoas com lesão medular completa utilizando transformada wavelet

Krueger, Eddy 26 September 2014 (has links)
CNPq / Introdução: As pessoas com lesão medular (LM) podem ter seus músculos paralisados ativados por meio da estimulação elétrica funcional (FES) sobre vias neurais presentes próximas à pele. Estas estimulações elétricas são importantes para a recuperação do trofismo neuromuscular ou durante o controle de movimento por próteses neurais. No entanto, ao longo da aplicação da FES, a fadiga ocorre, diminuindo a eficiência da contração, principalmente devido à hipotrofia neuromuscular presente nessa população. A aquisição da vibração das fibras musculares como indicador de fadiga é registrada por meio da técnica de mecanomiografia (MMG), que não sofre interferências elétricas decorrentes da aplicação da FES. Objetivo: Caracterizar a vibração do músculo reto femoral durante protocolo de fadiga neuromuscular eletricamente evocada em pessoas com lesão medular completa. Método: 24 membros (direito e esquerdo) de 15 participantes (idade: 27±5 anos) do sexo masculino (A e B na American Spinal Injury Impairment Scale) foram selecionados. Um estimulador elétrico operando como fonte de tensão, desenvolvido especialmente para pesquisa, foi configurado com: freqüência de pulso em 1 kHz (20% de ciclo de trabalho) e trem de pulsos (modulação) em 70 Hz (20% período ativo). O sinal triaxial [X (transversal), Y (longitudinal) e Z (perpendicular)] da MMG foi processado com filtro Butterworth de terceira ordem e banda passante entre 5 e 50 Hz. Previamente ao protocolo, a tensão de saída do estimulador foi incrementada (~3 V/s evitando-se a adaptação/habituação dos motoneurônios) até alcançar a extensão máxima eletricamente estimulada (EMEE) da articulação do joelho. Uma célula de carga foi usada para registrar a resposta de força, onde após a sua colocação, a intensidade da FES necessária para alcançar a EMEE foi aplicada e registrada pela célula de carga como 100% da força (F100%). Durante o protocolo de fadiga neuromuscular, a intensidade do estímulo foi incrementada durante o controle para manter a força em F100%. Quatro instantes (I - IV) foram selecionados entre F100% e a incapacidade da FES manter a resposta de força acima de 30% (F30%). O sinal foi processado nos domínios temporal (energia), espectral (frequência mediana) e wavelet (temporal-espectral com doze bandas de frequência entre 5 e 53 Hz). Os dados extraídos foram normalizados pelo instante inicial (I) gerando unidades arbitrárias (u.a.), e testados com estatística não paramétrica. Resultados: A frequência mediana não apresentou significância estatística. Em relação aos eixos de deslocamento da MMG, o eixo transversal mostrou o maior número de resultados estatisticamente significantivos. A energia da vibração das fibras musculares (domínio temporal) indicou diminuição entre os instantes I (músculo fresco) e II (pré-fadiga), como também entre os instantes I e IV (fadigado) com redução significativa. O domínio wavelet teve como foco o eixo transversal, especialmente as bandas de frequência de 13, 16, 20, 25 e 35 Hz, por terem indicado redução significativa durante a fadiga neuromuscular; principalmente, a banda de 25 Hz, que indicou redução significativa entre o instante I (valor da mediana dos dados de 0,53 u.a.) e os demais instantes [II (0,30 u.a), III (0,28 u.a.) e IV (0,24 u.a.)]. Conclusão: A fadiga neuromuscular é caracterizada pela redução da energia do sinal no eixo de deslocamento transversal (X) da vibração do músculo reto femoral, em pessoas com lesão medular completa, tanto no domínio temporal quanto principalmente no domínio wavelet, sendo a banda de frequência de 25 Hz a mais relevante, porque sua energia diminui com a ocorrência da fadiga neuromuscular. Estes achados abrem a possibilidade de aplicação em sistemas de malha fechada durante procedimentos de reabilitação física utilizando FES ou no controle de próteses neurais. / Introduction: People with spinal cord injury (SCI) may have the paralyzed muscles activated through functional electrical stimulation (FES) on neural pathways present below the skin. These electrical stimulations are important to restore the neuromuscular trophism or during the movement control using neural prostheses. However, prolonged FES application causes fatigue, which decreases the contraction strength, mainly due the neuromuscular hypotrophy in this population. The acquisition of myofibers’ vibration is recognized by mechanomyography (MMG) system and does not suffer electrical interference from the FES system. Objective: To characterize the rectus femoris muscle vibration during electrically evoked neuromuscular fatigue protocol in complete spinal cord injury subjects. Methods: As sample, 24 limbs (right and left) from 15 male participants (age: 27±5 y.o.) and ranked as A and B according to American Spinal Injury Impairment Scale) were selected. An electrical stimulator operating as voltage source, specially developed for research, was configured as: pulse frequency set to 1 kHz (20% duty cycle) and burst (modulating) frequency set to 70 Hz (20% active period). The triaxial [X (transverse), Y (longitudinal) and Z (perpendicular)] MMG signal of rectus femoris muscle was processed with a third-order 5-50 Hz bandpass Butterworth filter. A load cell was used to register the force. The stimulator output voltage was increased (~3 V/s to avoid motoneuron adaptation/habituation) until the maximal electrically-evoked extension (MEEE) of the knee joint. After the load cell placement, the stimuli magnitude required to reach MEEE was applied and registered by the load cell as muscular F100% response. Stimuli intensity was increased during the control to keep the force in F100%. Four instants (I - IV) were selected from F100% up to the inability to keep the FES response force above 30% (F30%). The signal was processed in temporal (energy), spectral (median frequency) and wavelet (temporal-spectral with twelve band frequencies between 5 and 53 Hz) domains. All data were normalized by initial instant, creating arbitrary units (a.u.), and non-parametric tests were applied. Results: The median frequency did not show statistical significance. Regarding the MMG axes, the transverse axis showed most statistical differences. The MMG energy (temporal domain) indicates the decrease between the instants I (unfatigued) and II (pre-fatigue), as well as instants I and IV (fatigued). The wavelet domain focused on the transverse axis, especially on 13, 16, 20, 25 and 35 Hz frequency bands, for having shown significant reduction proven during neuromuscular fatigue. In focus on 25 Hz band frequency that showed a constant decrease between instants I (median value from data de 0.53 a.u.) with subsequent instants [II (0.30 a.u.), III (0.28 a.u.) and IV (0.24 a.u.). Conclusion: Neuromuscular fatigue is characterized by energy decrease in MMG X-axis (transverse) signal of vibration on the rectus femoris muscle for complete spinal cord injured subjects, in the temporal domain but mainly in the wavelet domain. The 25 Hz is the most important band frequency because its energy decreases with neuromuscular fatigue. These findings open the possibility of application in closed-loop systems during physical rehabilitation procedures using FES or in the control of neural prostheses.
54

Detecção de fadiga neuromuscular em pessoas com lesão medular completa utilizando transformada wavelet

Krueger, Eddy 26 September 2014 (has links)
CNPq / Introdução: As pessoas com lesão medular (LM) podem ter seus músculos paralisados ativados por meio da estimulação elétrica funcional (FES) sobre vias neurais presentes próximas à pele. Estas estimulações elétricas são importantes para a recuperação do trofismo neuromuscular ou durante o controle de movimento por próteses neurais. No entanto, ao longo da aplicação da FES, a fadiga ocorre, diminuindo a eficiência da contração, principalmente devido à hipotrofia neuromuscular presente nessa população. A aquisição da vibração das fibras musculares como indicador de fadiga é registrada por meio da técnica de mecanomiografia (MMG), que não sofre interferências elétricas decorrentes da aplicação da FES. Objetivo: Caracterizar a vibração do músculo reto femoral durante protocolo de fadiga neuromuscular eletricamente evocada em pessoas com lesão medular completa. Método: 24 membros (direito e esquerdo) de 15 participantes (idade: 27±5 anos) do sexo masculino (A e B na American Spinal Injury Impairment Scale) foram selecionados. Um estimulador elétrico operando como fonte de tensão, desenvolvido especialmente para pesquisa, foi configurado com: freqüência de pulso em 1 kHz (20% de ciclo de trabalho) e trem de pulsos (modulação) em 70 Hz (20% período ativo). O sinal triaxial [X (transversal), Y (longitudinal) e Z (perpendicular)] da MMG foi processado com filtro Butterworth de terceira ordem e banda passante entre 5 e 50 Hz. Previamente ao protocolo, a tensão de saída do estimulador foi incrementada (~3 V/s evitando-se a adaptação/habituação dos motoneurônios) até alcançar a extensão máxima eletricamente estimulada (EMEE) da articulação do joelho. Uma célula de carga foi usada para registrar a resposta de força, onde após a sua colocação, a intensidade da FES necessária para alcançar a EMEE foi aplicada e registrada pela célula de carga como 100% da força (F100%). Durante o protocolo de fadiga neuromuscular, a intensidade do estímulo foi incrementada durante o controle para manter a força em F100%. Quatro instantes (I - IV) foram selecionados entre F100% e a incapacidade da FES manter a resposta de força acima de 30% (F30%). O sinal foi processado nos domínios temporal (energia), espectral (frequência mediana) e wavelet (temporal-espectral com doze bandas de frequência entre 5 e 53 Hz). Os dados extraídos foram normalizados pelo instante inicial (I) gerando unidades arbitrárias (u.a.), e testados com estatística não paramétrica. Resultados: A frequência mediana não apresentou significância estatística. Em relação aos eixos de deslocamento da MMG, o eixo transversal mostrou o maior número de resultados estatisticamente significantivos. A energia da vibração das fibras musculares (domínio temporal) indicou diminuição entre os instantes I (músculo fresco) e II (pré-fadiga), como também entre os instantes I e IV (fadigado) com redução significativa. O domínio wavelet teve como foco o eixo transversal, especialmente as bandas de frequência de 13, 16, 20, 25 e 35 Hz, por terem indicado redução significativa durante a fadiga neuromuscular; principalmente, a banda de 25 Hz, que indicou redução significativa entre o instante I (valor da mediana dos dados de 0,53 u.a.) e os demais instantes [II (0,30 u.a), III (0,28 u.a.) e IV (0,24 u.a.)]. Conclusão: A fadiga neuromuscular é caracterizada pela redução da energia do sinal no eixo de deslocamento transversal (X) da vibração do músculo reto femoral, em pessoas com lesão medular completa, tanto no domínio temporal quanto principalmente no domínio wavelet, sendo a banda de frequência de 25 Hz a mais relevante, porque sua energia diminui com a ocorrência da fadiga neuromuscular. Estes achados abrem a possibilidade de aplicação em sistemas de malha fechada durante procedimentos de reabilitação física utilizando FES ou no controle de próteses neurais. / Introduction: People with spinal cord injury (SCI) may have the paralyzed muscles activated through functional electrical stimulation (FES) on neural pathways present below the skin. These electrical stimulations are important to restore the neuromuscular trophism or during the movement control using neural prostheses. However, prolonged FES application causes fatigue, which decreases the contraction strength, mainly due the neuromuscular hypotrophy in this population. The acquisition of myofibers’ vibration is recognized by mechanomyography (MMG) system and does not suffer electrical interference from the FES system. Objective: To characterize the rectus femoris muscle vibration during electrically evoked neuromuscular fatigue protocol in complete spinal cord injury subjects. Methods: As sample, 24 limbs (right and left) from 15 male participants (age: 27±5 y.o.) and ranked as A and B according to American Spinal Injury Impairment Scale) were selected. An electrical stimulator operating as voltage source, specially developed for research, was configured as: pulse frequency set to 1 kHz (20% duty cycle) and burst (modulating) frequency set to 70 Hz (20% active period). The triaxial [X (transverse), Y (longitudinal) and Z (perpendicular)] MMG signal of rectus femoris muscle was processed with a third-order 5-50 Hz bandpass Butterworth filter. A load cell was used to register the force. The stimulator output voltage was increased (~3 V/s to avoid motoneuron adaptation/habituation) until the maximal electrically-evoked extension (MEEE) of the knee joint. After the load cell placement, the stimuli magnitude required to reach MEEE was applied and registered by the load cell as muscular F100% response. Stimuli intensity was increased during the control to keep the force in F100%. Four instants (I - IV) were selected from F100% up to the inability to keep the FES response force above 30% (F30%). The signal was processed in temporal (energy), spectral (median frequency) and wavelet (temporal-spectral with twelve band frequencies between 5 and 53 Hz) domains. All data were normalized by initial instant, creating arbitrary units (a.u.), and non-parametric tests were applied. Results: The median frequency did not show statistical significance. Regarding the MMG axes, the transverse axis showed most statistical differences. The MMG energy (temporal domain) indicates the decrease between the instants I (unfatigued) and II (pre-fatigue), as well as instants I and IV (fatigued). The wavelet domain focused on the transverse axis, especially on 13, 16, 20, 25 and 35 Hz frequency bands, for having shown significant reduction proven during neuromuscular fatigue. In focus on 25 Hz band frequency that showed a constant decrease between instants I (median value from data de 0.53 a.u.) with subsequent instants [II (0.30 a.u.), III (0.28 a.u.) and IV (0.24 a.u.). Conclusion: Neuromuscular fatigue is characterized by energy decrease in MMG X-axis (transverse) signal of vibration on the rectus femoris muscle for complete spinal cord injured subjects, in the temporal domain but mainly in the wavelet domain. The 25 Hz is the most important band frequency because its energy decreases with neuromuscular fatigue. These findings open the possibility of application in closed-loop systems during physical rehabilitation procedures using FES or in the control of neural prostheses.

Page generated in 0.0603 seconds