1 |
3D tiskárna / 3D PrinterCtibor, Jiří January 2016 (has links)
Master thesis deals with topic about 3D printers, concretely making hardware of control and power electronic for FDM 3D printer. The work could offer an overview about basic 3D printing technologies after reading. More information could be read about FDM technology, which is used in our printer, also with description of all important components. The furthest is discussed about electronic drives. If reader is interested in this topic, part of this thesis is schematic design of control electronics, which can be used to build own boards. Design of printed circuit boards is not present in attachment and can be obtained by contacting the author. For own control is used one of the open source control software. Mechanical problems and also mechanical design is done in parallel thesis by other student of Faculty of mechanical engineering.
|
2 |
Automated Bacterial Lighting System : An Agriculture Technology Solution with Focus on User ExperienceJäger, Viktor, Pazirai, Sebastian January 2021 (has links)
Technology in agriculture has in recent years gone from being traditional equipment for agriculture to digital monitoring systems, data collection, and optimization of various processes. The technology within the agriculture domain is called AgTech. Agricam is an AgTech company that have developed a product called Bacticam that combines software, hardware, and veterinary expertise to solve problems in milk production for farmers. Bacticam is a station for bacterial cultivation that is located on the farm and operated by the farmer. Bacticam enables farmers to grow bacteria and analyze milk samples on the farm, with the help of artificial intelligence (AI), to determine the condition of the milk and the overall health conditions of the cow. Bacticam analyses bacterial colonies by taking two photographs of the bacterial growth on the milk samples. These two photographs are taken within certain time intervals with two different light settings to highlight certain parts of the bacterial growth sample images for analysis. The process of photographing the samples is done by using a fixed Android mobile phone. Today, the Bacticam requires the user to switch the light settings manually which poses a risk of contamination to every analyzed sample. A solution to this problem would be to automate the change of light setting during the photography process by connecting custom control electronics, through Bluetooth, to the Android device. The problem explored in this thesis is the lack of designs of systems that control lighting remotely from Android devices and custom control electronics through a Bluetooth interface with a focus on customer experience (CE) and developer experience (DE). The goal is to contribute to new solutions in the AgTech domain with a focus on CE and DE. The result to the stated problem is called the Automatic Bacterial Lighting System (ABLS), which automates the process of changing the light setting during the photography process of bacterial colonies in milk samples for the Bacticam. The ABLS increase the reliability of the Bacticam by reducing the number of interactions the customer has to perform. The ABLS have been developed to establish a stable Bluetooth connection between an Android device and custom control electronics with a focus on both CE and DE. A literature study was conducted prior to the development of the ABLS to explore the domain and gain a better understanding of the issue at hand. / Teknik inom jordbruk har under de senaste åren gått från att enbart bestå av klassisk utrustning för jordbruk till digitala övervakningssystem, datainsamlingar samt IT optimeringar av diverse processer. Dessa moderna tekniklösningar inom jordbruksdomänen kallas för AgTech. Agricam är ett AgTech företag som har utvecklat en produkt som heter Bacticam, som kombinerar mjukvara, hårdvara samt veterinärkompetens för att lösa problem inom mjölkproduktion för mjölkbönder. Bacticam är en station för bakterieodling och sköts och hanteras på gården av mjölkbonden. Bacticam gör det möjligt för mjölkbönder att odla bakterier och analysera mjölkprover på sin gård med hjälp av en AI, för att på så sätt fastställa kvaliteten på mjölken samt kons hälsotillstånd. Bacticam analyserar bakteriekolonier genom att ta två bilder på bakterietillväxten på mjölkproverna. Dessa bilder tas inom vissa tidsintervall med två olika ljussättningar för att skapa en ordentlig profil av bakterieodlingen. Processen med att ta de två fotografierna görs med hjälp av en fastmonterad Androidmobiltelefon. I nuläget kräver Bacticam att användaren byter ljusinställningen manuellt under fotograferingen. Detta innebär en risk för kontaminering vid varje analyserat prov som tas. En lösning på detta problem är att automatisera bytet av ljussättningen under fotograferingsprocessen genom att ansluta styrelektronik till Androidmobiltelefonen via Bluetooth. Problemet som denna avhandling hanterar är bristen på kunskap om utformning av system som fjärrstyr belysning från Androidenheter via ett Bluetoothgränssnitt med hjälp av anpassad styrelektronik med ett fokus på kund- och utvecklarupplevelse. Målet var att bidra till nya lösningar inom AgTech-domänen med fokus på kund- och utvecklarupplevelse. Resultatet till det angivna problemet är döpt till Automatic Bacterial Ligting System (ABLS) och automatiserar ljussättningen under fotograferingsprocessen för att på så vis öka tillförlitligheten på Bacticam genom att minska antalet interaktioner som krävs av användare för att hantera Bacticam. ABLS har utvecklats för att skapa en stabil Bluetoothanslutning mellan en Androidenhet och anpassad styrelektronik med fokus på både kund- och utvecklarupplevelse. En litteraturstudie gjordes inför utvecklandet av ABLS för att bekräfta att avhandlingsproblemet var unikt samt att ABLS därför skulle lösa ett unikt problem. En utvärderingsmodell upprättades för att underlätta analysen samt bekräfta validiteten av ABLS.
|
3 |
High Performance Readout And Control Electronics For Mems GyroscopesSahin, Emre 01 February 2009 (has links) (PDF)
This thesis reports the development of various high performance readout and control electronics for implementing angular rate sensing systems using MEMS gyroscopes developed at METU. First, three systems with open loop sensing mechanisms are implemented, where each system has a different drive-mode automatic gain controlled (AGC) self-oscillation loop approach, including (i) square wave driving signal with DC off-set named as OLS_SquD, (ii) sinusoidal driving signal with DC off-set named as OLS_SineD, and iii) off-resonance driving signal named as OLS_OffD. A forth system is also constructed with a closed loop sensing mechanism where the drive mode automatic gain controlled (AGC) self-oscillation loop approach with square wave driving signal with DC off-set named as CLS_SquD. Sense and drive mode electronics employ transimpedance and transresistance amplifiers as readout electronics, respectively. Each of the systems is implemented with commercial discrete components on a dedicated PCB. Then, the angular rate sensing systems are tested with SOG (Silicon-on-Glass) gyroscopes that are adjusted to have two different mechanical bandwidths, more specially 100 Hz and 30 Hz. Test results of all of these cases verify the high performance of the systems.
For the 100 Hz bandwidth, the OLS_SquD system shows a bias instability of 4.67 & / #730 / /hr, an angle random walk (ARW) 0.080 & / #730 / /& / #8730 / hr, and a scale factor of 22.6 mV/(& / #730 / /sec). For the 30 Hz bandwidth, the OLS_SquD system shows a bias instability of 5.12 & / #730 / /hr, an ARW better than 0.017 & / #730 / /& / #8730 / hr, and a scale factor of 49.8 mV/(& / #730 / /sec).
For the 100 Hz bandwidth, the OLS_SineD system shows a bias instability of 6.92 & / #730 / /hr, an ARW of 0.049 & / #730 / /& / #8730 / hr, and a scale factor of 17.97 mV/(& / #730 / /sec). For the 30 Hz bandwidth, the OLS_SineD system shows a bias instability of 4.51 & / #730 / /hr, an ARW of 0.030 & / #730 / /& / #8730 / hr, and a scale factor of 43.24 mV/(& / #730 / /sec).
For the 100 Hz bandwidth, the OLS_OffD system shows a bias instability of 8.43 & / #730 / /hr, an ARW of 0.086 & / #730 / /& / #8730 / hr, and a scale factor of 20.97 mV/(& / #730 / /sec). For the 30 Hz bandwidth, the OLS_OffD system shows a bias instability of 5.72 & / #730 / /hr, an ARW of 0.046 & / #730 / /& / #8730 / hr, and a scale factor of 47.26 mV/(& / #730 / /sec).
For the 100 Hz bandwidth, the CLS_SquD system shows a bias instability of 6.32 & / #730 / /hr, an ARW of 0.055 & / #730 / /& / #8730 / hr, and a scale factor of 1.79 mV/(& / #730 / /sec). For the 30 Hz bandwidth, the CLS_SquD system shows a bias instability of 5.42 & / #730 / /hr, an ARW of 0.057 & / #730 / /& / #8730 / hr, and a scale factor of 1.98 mV/(& / #730 / /sec).
For the 100 Hz bandwidth, the R2 nonlinearities of the measured scale factors of all systems are between 0.0001% and 0.0003% in the ± / 100 & / #730 / /sec measurement range, while for the 30 Hz bandwidth the R2 nonlinearities are between 0.0002% and 0.0062% in the ± / 80& / #730 / /sec measurement range.
These performance results are the best results obtained at METU, satisfying the tactical-grade performances, and the measured bias instabilities and ARWs are comparable to the best results in the literature for a silicon micromachined vibratory gyroscope.
|
4 |
Řízení kolového podvozku / Wheeled-drive Robot ControlSitta, Michal January 2010 (has links)
The aim of this thesis is to describe the electronics of autonomus outdoor robot called TIM2. TIM2 is a group project and only a part of the project is presented. First part this work is about chasses common used in robotics. Detailed description of each type of module used is described in this work. There is also described communication protocol. A controllers for front and rear axle are also described. One part of this work is measurement, it contains electronics characteristic of modules and measurement to describe quality of motor controllers. Last part of the document is about communication between modules and impact on the robot functionality in the case of failure of a module. Enclosure provides complete circuit diagrams, printed circuit boards, planting plans, lists of components for all designed modules.
|
Page generated in 0.073 seconds